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ABSTRACT  

Non-Ribosomal Peptide Synthetases (NRPSs) and their exogenous 

tailoring partners have been heavily studied but not in the context of non-cognate 

systems.  Orf78, a dinuclear iron β-hydroxylase from the lysobacter pathway and 

homologous to CmlA from the chloramphenicol pathway, is used to test affinities 

for one native and two non-native T-domains.  Results indicate that there is 

enough difference between Type I and Type II NRPS systems to disfavor 

common recognition motifs.  Additionally, the β-hydroxylase P450sky, from the 

skyllamycin biosynthetic pathway, is used in conjunction with the NRPS AT-

domain NikP1AT from the nikkomycin biosynthetic pathway, in lieu of the 

homolog P450nikQ.  The second portion of the thesis will discuss the creation of 

a sustainable source of biodiesel products are currently a goal of ‘green’ 

programs.  The fatty acid decarboxylase P450olet uses the cheaply obtainable 

hydrogen peroxide as the oxidant to achieve a high-valent iron species.  

Substitution of the iron for manganese in the porphyrin scaffold raises the redox 

potential and forms a Mn(IV)-oxo complex that is too weak to perform C-H bond 

abstractions.  Alternatively, substitution of the iron-protoporphyrin IX with iron-

mesoporphyrin IX lowers the redox potential, increasing the amount of 

hydroxylated fatty acid at lower carbon chain lengths but also leads to a 

decrease in the efficiency in multiple turnover reactions.  
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CHAPTER 1 

A COMPARISON OF PCP DOMAINS AND THEIR RECOGNITION WITH A 

DINUCLEAR IRON HYDROXYLASE FROM THE LYSOBACTIN BIOSYNTHETIC 

PATHWAY  

1.1 INTRODUCTION 

The necessity to diversify the antibiotic arsenal has never been as crucial as it is 

now with the current level of antibiotic resistant bacteria causing problematic 

issues in the realm of public health, particularly Streptococcal and 

Staphylococcal species 1-3.  Although attempts are currently being pursued 

through synthetic means 4-6, the production of more complex antibiotics may be 

cost-prohibitive, if not synthetically unachievable.  One potentially viable route is 

through modification of the antibiotic machinery, known as non-ribosomal peptide 

synthetases (NRPS).  Such efforts may create opportunities to synthesize a 

library of compounds built around a structural scaffold that can be subsequently 

screened for antimicrobial activity.  Specifically, the use of a pre-existing NRPS 

complex, a protein megastructure that produces peptide-based antibiotics 

through an assembly-line process, may provide a useful tool for the incorporation 

of non-cognate tailoring enzymes as a means for producing modified versions of 

current antibiotics.  This method has not gained widespread popularity due to its 

trial-and-error approach and its typically low-yields of product 7.  Alternatively, 
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entire operons have been transplanted from one organism to another with 

successful production of antibiotic.  Although providing new biological platforms 

for synthesis, pathogenic bacteria may have already developed resistance to 

these natural products 8.  There has been very little research involving the 

transplantation of enzymes from one antibiotic biosynthetic pathway to another to 

generate new products.  Homologous enzymes must be identified and 

characterized to determine their suitability for a non-ribosomal peptide 

synthetase (NRPS) system that is not natively recognized. 

Reviews by Marahiel group give an in-depth explanations of how an 

NRPS is formed and how they function to create an antibiotic product 9, 10.  

Briefly, a NRPS is a modular complex with each module involved with the 

identification and activation of a particular amino acid that ultimately becomes 

incorporated into a nascent peptide chain.  These modules are further divided 

into individual domains which are each responsible for a specific aspect of the 

identification, modification, and transfer of the amino acid into the nascent 

peptide chain.  In a canonical multimodular NRPS system, a single module 

contains three domains:  the Adenylation (A) domain identifies and activates a 

specific amino acid through an adenylation reaction, the Thiolation (T or PCP) 

domain tethers the activated amino acid through a thioester bond onto a post-

translationally transferred phosphopanthetheine (ppant) and transports the 

substrate between domains, and the Condensation (C) domain which extends 

the nascent polypeptide chain.  One interesting deviation from this operation that 

will be discussed here is the modification of the tethered substrate by enzymes 
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that operate in trans to the NRPS, such as the β-hydroxylases CmlA and 

P450sky, providing a method to diversify the final product.   

The recognition event may depend on either ionic or hydrophobic binding 

domains present on the surfaces of the enzyme and the T-domain, enzyme 

specificity for the tethered amino acid, or a combination of both.  P450 

hydroxylases that operate in this fashion, such as P450NikQ and P450sky, are 

reported to rely on hydrophobic interactions to properly recognize the binding 

motif of the NRPS, although these residues have yet to be fully elucidated 11, 12.  

However, there is potential for greater product diversity if these binding motifs 

can be solved and incorporated into modules of an NRPS that incorporate non-

modified amino acids, allowing for the creation of modified products.  The β-

hydroxylase Orf78, associated with the lysobactin biosynthetic pathway, is 

homologous with CmlA from the chloramphenicol biosynthetic pathway.  

However, the uniqueness of Orf78 lies with its ability to recognize and 

hydroxylate substrate attached to three individual NRPS modules instead of the 

singular modification conducted by CmlA.  Study of the similarities and 

recognition flexibilities between the hydroxylase binding motifs will be conducted 

through comparisons of interactions between Orf78 and native and non-native T-

domains and gathering information necessary to successfully modify an NRPS 

pathway to create a familiar but unique antibiotic-like compound. 

 Lysobactin is a depsipeptide-based antibiotic isolated from Lysobacter sp. 

SC 14067 (ATCC 53042) 13, 14 (Figure 1.1, bottom).  In its biologically active form, 

it binds to the D-Ala-D-Ala unit of Lipid II during the bacterial biosynthesis of 
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peptidoglycan and inhibits the synthesis of new cell wall in gram-positive bacteria 

15.  The inability for the bacteria to synthesize a new cell wall decreases its 

overall robustness, allowing turgor pressure to weaken the cell from within and 

ruptures in the cell membrane.  This mechanism of bacteriocide places 

lysobactin in the same category as vancomycin 16 and similar derivatives, such 

as teixobactin 17 and balhimycin 18.  However, the importance of lysobactin lies in 

in the fact that its minimum inhibitory concentration is one quarter of 

vancomycin’s on gram-positive bacteria 13, with its strength leading to lower 

dosages and the hope of a prolonged lifetime prior to eventual ineffectiveness 

due to the evolution of antibiotic-resistant strains of gram-positive bacteria.  Due 

to the inhibitory effects of the drug to Lipid II, there is no activity towards 

mammalian cells, making the drug a possible candidate for use against 

troublesome gram-positive bacteria common in hospitals, such as 

Staphylococcus aureus and Streptococcus pneumoniae.   

The lysobactin NRPS biosynthesis pathway is organized into eleven 

modules segregated into two genes, with hydroxylation of two modules on LybA 

associated with hydrophobic substrates (Phe3 and Leu4) and one module on 

LybB associated with a weakly acidic substrate (Asn10) 19 (Figure 1.1, top).  This 

contrasts with CmlA, which solely hydroxylates the hydrophobic non-native 

amino acid L-para-aminobenzoic acid (L-PABA) 20.  This also differs from 

P450sky, a hydroxylase with a heme cofactor that hydroxylates three modules on 

the skyllamycin biosynthetic pathway associated with three hydrophobic 

substrates (PCPPhe5, PCPTyr7, and PCPLeu11) 21.  For Orf78, the diversity of 
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recognized charges on the substrate side-chain may allow for greater flexibility 

for recognition than with other β-hydroxylases; however, the reasons why some 

amino acids are hydroxylated while others are not is unclear.  The structure of 

the antibiotic shows the β-hydroxyl group on PCPPhe3 is necessary to form an 

intermolecular lactone with the C-terminal carboxylate of the nascent peptide 

chain.  However, it is unknown what functions the β-OH groups on PCPLeu4 and 

PCPAsn10 serve, except at the very least assisting to solubilize the active 

compound, which is mostly hydrophobic in nature. 

Makris et al. showed that oxidation kinetics on Type I NRPS systems 

(CmlA/CmlPAT) can be used as an indirect measurement to determine binding of 

the substrate carrier to the hydroxylase, with quicker rates indicative of greater 

oxygen access to the active site of the enzyme 20.  For heme-bound 

hydroxylases, the dissociation constants with Type II NRPS systems 

(P450sky/PCP7O-Me-Tyr) 12, 20 were used to show the differences between bound 

and unbound substrate carriers.  However, there is no information concerning 

cross-recognition for a Type II-associated hydroxylase with non-native Type I or 

II NRPS systems.  Following basic characterization of Orf78, to include iron 

quantitation and structural features, a comparative analysis of oxidation kinetics 

between Orf78 and modular components from three different systems will be 

performed, utilizing the following T-domains:  PCPAsn10 from the lysobactin 

system, CmlPT from the chloramphenicol system, and PCPPhe6 from the 

teichoplanin system.   
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1.2 MATERIALS AND METHODS 

Cloning 

The orf78 gene was cloned from the genomic template from Lysobacter 

sp. 53042 (ATCC).  The following primers were utilized for the amplification of the 

orf78 gene with Taq polymerase (NEB), where the capitalized regions are the 

restriction sites for SfaAI and MssI:   

forward - 5’-ccatatgGCGATCGCcaataccactca-3’ 

reverse - 5’-ccatatgGTTTAAACtcacagaagcag-3’ 

The amplicon and pVP91A vector were both digested with SfaAI and MssI 

(Thermo Fisher Scientific), gel-purified, and ligated with T4 DNA ligase (NEB).  

The insert was verified using the facilities at ACGT, Inc. 

The PCPAsn10 gene was similarly cloned from the genomic template of 

Lysobacter sp. 53042 (ATCC).  The following primers were utilized for the 

amplification of the A10T gene with Q5 polymerase (NEB), where the capitalized 

regions are the restriction sites EcoRI and HindIII:   

forward - 5'- cgtatcCATATGctgctgtcgccgccgcagcgcgag -3' 

   reverse - 5'- cgtatcAAGCTTcgccggcaacgccgccccgc -3' 

The amplicon and pET21b(+) vector were both digested with EcoRI and HindIII 

(NEB), gel-purified, and ligated with T4 DNA ligase (NEB).  The sequence was 

verified using the facilities at ACGT, Inc. 
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Protein Expression and Purification 

The Orf78 plasmid was chemically transformed into BL21(Dε3) cells.  A 

single colony was used to inoculate a starter culture which were used as 

inoculant for 1 liter flasks of M9 minimal media.  The components of the M9 

minimal media consists of: 200 mL M9 salts, 2 mL of 1 M MgSO4, 20 mL of 20% 

glucose, 100 µL of 1 M CaCl2, 12 mL overnight culture, and 1 mL of 100 mg/mL 

Ampicillin.  The culture was induced at an OD600=0.7 with the addition of 150 µM 

isopropyl β-D-1-thiogalactopyranoside (IPTG; RPI corp.) supplemented with 50 

µM FeCl3 with further incubation for 16 hours at 18oC.  The cells were lysed, 

cleared, and purified with Ni-NTA resin equilibrated with 50 mM sodium 

phosphate, monobasic, 300 mM sodium chloride, pH=7.5, 10 mM imidazole 

(Buffer A), washed with Buffer A + 10 mM imidazole, and eluted with Buffer 

A+240 mM imidazole.  Following purification, the eluent was dialyzed overnight in 

50 mM HEPES, pH=7.5 + 10% glycerol.  The protein was concentrated, 

aliquoted, and stored at -80oC.   

The PCPAsn10 plasmid was chemically transformed into BL21(Dε3) cells.  

A single colony was used to inoculate a starter culture which were used as 

inoculant for 1 liter flasks of Luria-Bertani media.  The culture was induced at 

OD600=0.6 with 150 µM IPTG followed by incubation for an additional 16 hours at 

37oC.  The cells were lysed, cleared, and purified with Ni-NTA column 

equilibrated with Buffer A, washed with Buffer A + 10 mM imidazole, and eluted 

with Buffer A + 240 mM imidazole followed by dialysis overnight in 25 mM 

HEPES, pH=7.5.  The dialysate was subsequently loaded onto DEAE resin 
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equilibrated with 25 mM HEPES, pH=7.5.  The flow-through, which contains the 

properly-folded protein, was dialyzed in 100 mM HEPES, pH=7.5, 30% glycerol 

prior to concentrating, aliquoting, and storage at -80oC.   

Size Exclusion Chromatography 

Nine milligrams of Orf78 were loaded onto an S-200 size-exclusion 

column attached to an ATKA FPLC equilibrated with 50 mM HEPES, pH=7.5 and 

eluted at 0.3 mL/min.  The elution profile was matched with a set of protein 

standards with known molecular weight to determine the oligomeric state of the 

enzyme. 

UV-Vis 

All UV-Vis measurements were obtained on an Agilent 8453 UV-Vis 

spectrophotometer and analyzed on Agilent proprietary software or the OriginPro 

software package.  The concentration of Orf78 was calculated using Beer’s Law 

and the theoretical ε280 = 58.8 mM-1cm-1.  An azide assay was used to determine 

the presence of any diiron cluster within the enzyme.  50 µM of Orf78 was 

incubated in 1 mL of 50 mM HEPES, pH=7.5, 8 M sodium azide for 20 minutes at 

4oC.  The solution was cleared by centrifugation at 4oC and spectrum taken of 

the supernatant at 340 nm and 420 nm.  

A reductive titration was performed to determine the number of electrons 

necessary to fully reduce the enzyme from the fully oxidized state.  All solutions 

were buffered in 50 mM HEPES, pH=7.5 degassed with N2.  A 2 mM solution of 

sodium dithionite was utilized as a reductant.  Separately, a solution of 50 uM 

Orf78 was prepared in an anaerobic cuvette with the addition of 0.5 molar 
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equivalents of methyl viologen.  Sodium dithionite was titrated with a gas-tight 

syringe in 30 µM increments until the charge-transfer band at 340 nm completely 

bleached and the methyl viologen absorption peaks from 350-395 nm became 

apparent, indicating full reduction of the enzyme.  The data was analyzed on 

OriginPro 2016 as a plot showing number of electrons against total absorbance 

at 340 nm. 

Electron Paramagnetic Resonance (EPR) 

Spectra of the mixed-valent enzyme were collected on an EMXplus X-

band EPR (Bruker) at 10K with 5 mW power and a microwave frequency of 9.834 

GHz.  Each spectrum is a composite of 15 averaged scans per sample.  The 

data were collected and analyzed on either the Bruker Xenon software suite or 

the SpinCount software package.  Determination of the g-values were performed 

by the use of the equation g = (71.4484v) / B, where magnetic field, B (mT) and 

the microwave frequency, v (GHz).  All solutions were buffered in 50 mM 

HEPES, pH=7.5 and degassed with N2.  Sample preparation was performed 

anaerobically with O2 levels less than 1 ppm.   

The visualization of the mixed-valent species involved the preparation of 

four samples.  The sample containing one electron-equivalent to create the 

mixed-valent species involved the addition of 250 µM sodium dithionite to 400 µL 

of 400 µM degassed Orf78 + 200 µM methyl viologen and incubated until the 

solution transformed from purple to clear.  The solution was transferred to a 

quartz cuvette, capped, and frozen in liquid nitrogen for storage.  For the 

formation of the partial mixed-valent species by the addition of 0.8 electron-
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equivalents, 200 µM of sodium dithionite was added to 400 µM Orf78 + 200 µM 

methyl viologen and stored as above.  For samples containing no mixed-valent 

species from 0.4 electron-equivalents, 400 µM Orf78 + 200 µM methyl viologen 

were immediately frozen and stored.  For samples containing no mixed-valent 

species from two electron equivalents, 400 µM sodium dithionite was added to 

400 µM Orf78 + 200 µM methyl viologen and frozen off for storage. 

Alteration of the temperature can determine the protonation state of the 

oxygen bridge between the two iron molecules.   The mixed-valent species from 

the fully mixed-valent sample above was measured at a constant power of 5 mW 

and all spectra are an average of 15 scans.  Measurements were taken at 

temperature points at 4K, 16K, 25K, and 39K. 

The sample with highest content of the mixed-valent form was 

subsequently used for the power saturation experiment.  The temperature was 

kept at a constant temperature of 8K ± 0.75K and the power was increased from 

0.07942 mW to 158.9 mW, with each spectrum representing the average of 15 

scans.  The distance, from peak to trough, of the second g-value was used as a 

measure of the signal intensity (I) at any given power.  The power at half-

saturation (P1/2) was determined using the following equation: 

I = Io*P1/2/(1+P/P1/2))b/2 

, where Io is the intensity under unsaturated conditions and b is a homogeneity 

value assumed to be equal to 1.  The data was plotted as log(I/√(P)) as a 

function of power (mW). 
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Synthesis of Coenzyme-A derivatives 

Bodipy-CoA was synthesized by dissolving 110 nanograms each of 

Bodipy-FL (Life Technologies) and Coenzyme A (CoA; RPI corp.) in 300 µL 

DMSO + 1.8 mL 75 mM MES, pH=6 + 100 mM magnesium acetate.  The solution 

incubated on ice in a dark environment for 10 minutes followed by incubation at 

room temperature in a dark environment for 2 hours while rapidly stirring.  Pure 

product was isolated with several extractions of ice-cold diethyl ether.  Excess 

ether was evaporated under N2 prior to aliquoting and storage at -20oC. 

Synthesis of Phe-CoA involved dissolving 5 mg of Boc-Amino Acid (AA), 4 

mg dicyclohexylcarbodiimide (DCC, Sigma Aldrich), and 3 mg N-

hydroxysuccinimide (NHS, Sigma Aldrich) with 1 mL acetonitrile and incubating 

on ice for 10 minutes prior to stirring at room temperature for 24 hours under a 

nitrogen atmosphere.  Following the incubation time, 15 mg of CoA dissolved in 

1.5 mL of 40 mM lithium carbonate were added to the solution and incubated on 

ice for 5 minutes prior to further incubation at room temperature for an additional 

2 hours.  The addition of H2O:TIPS:TFA at a ratio of 2.5:2.5:95 was added to 

deprotect the amine group of the Boc-AA-CoA and the solution was allowed to 

stir at room temperature for 2 additional hours.  The Phe-CoA was purified by 

several extraction steps with ice-cold diethyl ether, resulting in the precipitation of 

the desired product.  The precipitated product was isolated via centrifugation, 

dried under N2, and resuspended in dH2O to a concentration of 2.5 mM, 

aliquoted, and stored at -20oC. 
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SfP recognition of the T-domain 

The Phe-PPant is transferred to the T-domain with a 4´- 

phosphopantetheinyl transferase (SfP) derived from Bacillus subtilis and 

expressed in E. coli.  After the T-domain is purified, Bodipy-PPant is transferred 

to test for SfP recognition of the serine residue, as part of the GGxS motif.  The 

reaction is set up with 30 mM magnesium chloride, 60 mM Tris, pH=8.0, 700 mM 

AA-CoA, 5 µM SfP, and 200 µM apo-PCPAsn10 followed by incubation at room 

temperature for 1 hour and desalting in 50 mM HEPES, pH=7.5.  The sample is 

then run on a 12% SDS-PAGE gel and, upon completion, viewed under a 

transilluminator to verify its presence at ~10kDa.  If the SfP recognizes the T-

domain, then the same procedure is used to transfer Phe-PPant for use in 

Stopped-flow experiments. 

Stopped-flow 

Binding between Orf78 and any T-domain was determined by the rate of 

rebound for the iron-oxo charge-transfer band at 340 nm from the bleached 

reduced state to its re-emergence when oxidized.  The measurement of the 

oxidation rates for the hydroxylase/NRPS complex was performed on an SX20 

Stopped-flow spectrophotometer (Applied Photophysics) for accurate 

visualization and rate measurements.  The temperature of the experiment was 

set to 4oC and data was collected utilizing a PMT detector set at 340nm with 

5000 time points over 500 seconds per measurement.   

Syringe A contained 50 µM Orf78 + 25 µM methyl viologen that was fully 

reduced with excess dithionite in an anaerobic bag and desalted to remove any 
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small molecules.  The solution was then transported anaerobically and loaded 

into the stopped-flow pre-chilled at 4oC.  Syringe B contained 50 mM HEPES, 2 

mM O2, and one of the following: apo- PCPAsn10, holo- PCPAsn10, Phe-PCPAsn10, 

Phe-CmlPAT from the chloramphenicol NRPS, or Phe-PCPTyr6 from the 

teichoplanin NRPS.  The collected data was an average of triplicate traces for 

each sample and fit to single exponential functions to determine the final rates in 

Pro-Data Viewer (Applied Photophysics). 

1.3 RESULTS 

Orf78 contains a dinuclear iron cluster 

An analysis of the sequence alignment shows the endogenous ligands 

present in CmlA are fully conserved in Orf78 (Figure 1.2).  A model of Orf78, 

created using SWISS-MODEL 22 and the published structure of CmlA (PDBID: 

4JO0) as a template, putatively confirms an overlap for all residues involved in 

the ligation of the metal atoms.  The first coordination sphere consists of three 

His, two Glu, and two Asp residues, with one of the Asp forming a µ-1,1 

carboxylate bridge between the two irons in the cluster.  The presence of a 

carboxylate bridge is not uncommon, but the bridge is not usually a µ-1,1 

configuration, but rather a µ-1,3 carboxylate linkage.  Crystallographic studies of 

other diiron enzymes show at least one µ-1,3 carboxylate bridge, such as the 

case with Methane Monooxygenase (MMO), Purple Acid Phosphatase (PAP), 

and Ribonucleotide Reductase (RNR) 23-25.  Specifically, the crystal structure of 

CmlA confirms the presence of residue D403 forming a μ-1,1-carboxylate bridge 

between the active site irons.  However, the structure also shows the presence of 
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an adventitious acetate anion present from the mother-liquor that may be 

displacing D403 into a conformation forming a mono-dentate rather than bi-

dentate bridge.  It is worth noting that this same acetate anion may be 

responsible for displacing residue D430, which is a viable ligand in range of an 

iron atom.  However, it is unknown whether a similar bridge or solvent ligation 

pattern is present in Orf78, as attempts to crystallize the protein have been futile. 

In similar fashion to that proposed for CmlA, Orf78 purifies as a dimer with 

two joined 60.8 kDa units (Figure 1.3).  Size-Exclusion Chromatography shows 

the protein elution at around 125 kDa with no peaks associated with monomeric 

or other oligomeric forms of the enzyme.  The crystal structure for CmlA suggests 

the dimer interaction is derived from a dimerization arm that electrostatically 

interacts with the same domain on the opposing monomer in a hook-like fashion 

separate from the active site region of the jelly-roll motif.  Similar residues are 

present at the dimer interface of the model for Orf78, inferring the nature of the 

dimerization is electrostatic in nature as well. 

Iron quantitation with the ferrozine assay consistently yields 1.7-2.3 irons 

per dimer.  These results were confirmed with ICP-MS and show only trace 

amounts of manganese, zinc, and copper present in the sample.  However, the 

fully-loaded metal count for the dimer should be around four irons per dimer 

since each active site in the dimer requires occupancy by two iron molecules.  

Given the minimal media growth conditions supplemented with ample iron (III) 

chloride, it is not known why complete loading does not occur.  Metal 

reconstitution experiments in both aerobic and anaerobic conditions have also 
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been unsuccessful.  Nonetheless, the lack of an appreciable high-spin Fe3+ 

signal in the as-isolated enzyme, reductive titration of Orf78 with sodium 

dithionite, and the presence of a mixed-valent signal in EPR demonstrates that 

almost all of the irons are bound as a cluster. 

The UV-Vis spectrum of Orf78 consist of a broad spectral region with 

weak extinction coefficients extending from 300-450 nm, culminating in a major 

peak maximum at 340 nm and a minor peak maximum at 420 nm.  Similar peaks 

are observed in other hydroxo-bridged diiron enzymes like CmlA 20, and 

Hemerythrin (Hr) 26 when in a low-spin, diferric state.  The peak at 340 nm 

manifests through the electronic charge-transfer exchange by the Fe2-O, which is 

created by splitting the π-orbital electrons resonating between the two iron atoms 

via an oxo-bridge 27.  The intensity of the bands is less significant than those of 

proteins with oxo-bridges, indicating that resonance is weaker due to the oxo-

bridge being protonated.  An Fe2-O bridge that forms in a linear fashion will 

usually absorb at 420 nm and 500 nm.  However, at the more acute angles of 

114o to 130o, the lowest Fe2-O π-transition state at 500 nm blends with the 

second lowest state at 420 nm, indicating a less-obtuse bridge form is present 

with Orf78 28. 

Titrating sodium dithionite to the protein, and subsequent reduction of the 

diferric cluster, decreases the intensity of the 340 nm and 420 nm peaks, leading 

to bleaching of the charge-transfer signal through the quenching of its π-orbital 

resonance effects (Figure 1.4).  Reduction is quick, inferring minimal difficulty for 

electron access to the active site of Orf78.  The oxidation of Orf78 from the 
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diferrous state mimics CmlA and human dehydroxypusine hydroxylase by fully 

oxidizing to the diferric state as observed by a rebound of the bleached 340 nm 

and 420 nm charge-transfer bands 29.  However, Stopped-flow data shows that 

oxidation of Orf78 from the diferrous state in the presence of molecular oxygen is 

a slow process, suggesting difficulty for the molecular oxygen cofactor to gain 

access to the active site.  This, in addition to an increased rate in the presence of 

Phe-PCPAsn10, suggests the presence of necessary events prior to the activation 

of O2 by the reduced enzyme.   

The introduction of sodium azide to diferric Orf78 forms an additional π-

stabilized bridge, leading to an increase in absorbance for the 340 nm and 420 

nm bands (Figure 1.5).  Similar spectra are observed with biological non-heme 

diiron enzymes, such as metHr and Hr 27, and synthetic constructs 30.  However, 

the concentration requirements of sodium azide necessary for bridge formation is 

four-fold higher than required for CmlA and binding is not immediate, requiring 

incubation at 4oC for longer periods to time to observe maximum peak 

amplitudes.  Two possible reasons for this is that access to the active site for 

azide is restrictive or the distance between the two iron molecules is not optimal 

to facilitate formation of the azide bridge. 

The EPR spectrum of the diferric state does not induce a signal, which 

confirms that Orf78 is a S=5/2-5/2 anti-ferromagnetically spin-coupled system 

(Figure 1.6, top right).  The absence of a signal at g=4.3 shows that there is both 

little free iron in the sample and also that the two irons are not separate S=5/2 

systems 31.  Incubation with 0.5 molar equivalents of sodium dithionite produces 
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a S=5/2-2 spin-coupled system with an orthorhombic mixed-valent signal and 

observable values of gz=1.96 and gy=1.86 at low temperature (Figure 1.6, top 

left).  These values are observed in other anti-ferromagnetically spin-coupled 

systems, like RNR, when one-electron equivalent is added to the diferric enzyme 

32.  The gx value is not observed, presumably blending into an extended gy 

signal.  This behavior is also observed in the mixed-valent signal for CmlA.  

There is no signal when the sample is reduced with two-electron equivalents to a 

diferrous state, indicating a S=2-2 spin-couple.  This reinforces the conclusion 

that the cluster is anti-ferromagnetically coupled since it is also observed in 

similarly spin-coupled systems, such as MMO and Hr 33, 34.   

The intensity of the mixed-valent EPR signal for Orf78 shows a 

temperature-dependent that suggests the presence of a hydroxo-bridge between 

the two iron molecules (Figure 1.6, bottom left).  Increasing the temperature from 

4K to 18K does not significantly alter the amplitude of the signal.  However, the 

signal decreases as the temperature is increased above 18K and is ultimately 

lost beyond 39K.  Similar tendencies are observed in other hydroxo-bridged 

diiron proteins, like CmlA, MMO, and PAP, which have decreased relaxation 

times due to the increased acidity of the associated irons 35.  The presence of an 

oxo-bridge would increase the relaxation time of the π-electron transfer between 

the two iron atoms, preventing decay of the mixed-valent signal until higher scan 

temperatures (>100K) are achieved 36. 

Changes to the local environment, such as the presence of substrate or 

cofactors, may alter the sensitivity of the relaxation state for the mixed-valent 
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diiron species and observed through power saturation studies 37.  As the power 

increases, the relaxation state of the electrons sit at a higher energy level and the 

signal decreases.  Power saturation is also informative for determining what 

power should be used to measure any EPR spectra so there is a reduction in 

unwanted g-value broadening and signal reduction.  For Orf78, a plot of the 

power saturation curve shows a P1/2 equal to 93.2mW ± 8.6mW (Figure 1.7), so 

a high amount of power is needed to saturate the signal at 10K and overcome 

the relaxation times of the mixed-valent signal.  Plotting ln(P1/2) for this value as a 

function of temperature (K-1) gives a value of 4.53 at 10K, which is slightly higher 

than CmlA (~3.8) and the hydroxo-bridged diiron Mitochondrial Alternative 

Oxidase (~4.9) 20, 38.  The values are assumed to be close enough to associate 

similar power saturation values of Orf78 for all temperature ranges.  Ideally, more 

points would be preferred, but the slope, and the corresponding J value, of the 

plot can be inferred due to the homology of the two enzymes and is assignable 

as a hydroxo-bridge in the mixed-valent form.   

Similarity of PCP domains 

Three PCPs for the lysobactin biosynthetic pathway, PCPPhe3, PCPLeu4, 

and PCPAsn10, provide substrate that are all β-hydroxylated prior to their 

incorporation into the nascent peptide chain.  A protein sequence alignment 

(Clustal Omega) of the three contain a sequence identity of 40%-60% (Table 

1.1).  It has been theorized that this is due to gene duplication followed by 

mutation of pre-existing modules, creating a useful and cheap mechanism to 

expand the library of NRPS products 39, 40.  However, the three PCP domains that 
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facilitate β-hydroxylation of amino acids in the skyllamycin biosynthetic pathway 

(incorporated in sky30 and sky31) have a sequence identity of 38%-60% 21.  

Although the identity range is wider than the lysobactin pathway, variations for 

both systems are mostly localized in the flanking regions of the four-helix bundle 

of the PCPs.  It is unclear what effects these flanking regions have on the overall 

function of the module or their role in recruiting their respective β-hydroxylases.  

Incorporation of PCPPhe6, the only PCP in the teicoplanin biosynthetic pathway 

(incorporated in dbv17) that is β-hydroxylated by the diiron hydroxylase Orf12, 

into the sequence alignment with the lysobactin PCPs lowers the sequence 

identity to 30% 41.  However, a strong conservation of residues exists within the 

core regions containing helices α2 and α3, which are presumed to contain the 

binding motifs to the hydroxylase.  Modeling the three PCPs from lysobactin to 

the PCP from teichoplanin illuminate overlaps across all four helices, suggesting 

that the PCPs for both systems adopt similar four-helix bundles in their active 

forms (Figure 1.8).   

Insertion of CmlPT from the Chloramphenicol biosynthetic pathway 

(incorporated in orf8) 42, a Type II NRPS which contains a β-OH L-PAPA, into the 

sequence alignment with the four Type I PCPs drops the sequence identity to 

20%.  The homology among all five T-domains also exemplifies this, as there is a 

large drop-off in similarity upon the addition of the CmlPT PCP (Figure 1.9).  A 

model of CmlPT with any of the Type I PCPs above show incompatibility with the 

Type II systems, as the conformation adopts a two-helix bundle in lieu of four.  

The main discrepancy is the presence of random coil, which did not conform to 
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the outfitted model, so does not conform to the four helix motif for the Type I 

systems.  This may infer that hydroxylases from Type I NRPS systems may not 

recognize Type II NRPS systems and vise versa.   

Despite the poor conservation between all five PCPs, certain aspects of 

the core motif, mainly Lx[5]Gx[5]Fx[2]GGxSx[4]Q, remain consistent. In all cases, 

residues for SfP recognition are similar enough on all five PCPs to allow the 

transfer of Bodipy-PPant 43.  The majority of conserved residues are also 

hydrophobic, suggesting the interaction between the T-domain and the 

hydroxylase are driven by Van der Waals forces or are less reliant on 

electrostatics for their direct connection with each other.  The PCP TycC3 from 

the tyrocidine biosynthetic pathway contains a leucine residue that is presumably 

associated with the interaction between the itself and Sfp 44, although there are 

PCPs where the SfP recognition site could not be elucidated 45.  Mutation of this 

leucine from TycC3 inhibited recognition of SfP for the T-domain, but it is 

unknown whether similar behavior occurs with hydroxylase/T-domain 

interactions.  Residues on the flanking ends of the PCPs may assist with protein-

protein interaction or they may provide subtle positioning of the four-helix bundle 

so residues near the SfP recognition site can interact with the hydroxylase.  Site-

directed mutations demonstrate that alterations of the α-helices of the PCP will 

destabilize the interaction between the PCP and Sfp 46. 

 

 

 



www.manaraa.com

21 
 

Oxidation rates of PCPs with Orf78 

 A study of diferrous CmlA and its NRPS system shows an association 

between the rate of oxidation of the enzyme and the presence of aminoacylated- 

or non-amionoacylated NRPS and molecular oxygen, which conclude that a 

notable difference exists concerning oxygen-gating by the enzyme 20.  In the 

absence of NRPS, the rate of oxidation for CmlA is slow at 0.005 s-1.  The rate is 

relatively unchanged upon the introduction of apo- or holo-NRPS, with an 

observed rate of 0.01 s-1.  The rate of oxidation increases to 12 s-1 in the 

presence of aminoacylated NRPS, suggesting that proper binding and channel 

access for O2 in CmlA occurs only in the presence of aminoacylated-NRPS. 

This experiment was reproduced with Orf78 to determine the rate of 

oxidation for the enzyme in the presence of native and non-native PCPs.  Since 

phenylalanine is one of the native substrates recognized by Orf78 and the 

aromatic ring is similar to the native tyrosine substrate for PCPTyr6 and the native 

L-PABA substrate for CmlP, recognition is assumed to be driven by the binding 

motifs on the PCPs and not the tethered amino acid.  Poor expression and 

solubility of PCPAsn10 prevents these experiments from being performed under 

pseudo-first order conditions so the molar excess of PCP was kept at no more 

than four times greater than Orf78 for all three T-domains. 

 All rate measurements are shown in Figure 1.10.  The oxidation rates for 

Orf78 in the presence of any apo-PCP and holo-PCP results in a slow rate of 

oxidation of 0.004 s-1, similar to Orf78 in the absence of PCP and the rates of 

CmlA under similar circumstances.  The lack of a biologically significant rate 
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indicates that either the apo- nor holo- forms of the PCP do not bind or that that 

they bind but do not properly gate O2 in the absence of tethered amino acid.  

Orf78 in the presence of Phe-PCPAsn10 shows fits with a double exponential, with 

an initial phase of 0.2 s-1 followed by a second phase of 0.005 s-1.  The initial 

phase may be a mixture of the PCP binding event and quick oxidation and a slow 

oxidation rate due to unbound enzyme, and artifact of the experiment not 

adhering to pseudo-first order conditions.  The second phase is likely O2 gating 

into Orf78 unbound to PCPAsn10.  The rates of Orf78 in the presence of Phe-

PCPTyr6 and Phe-CmlPT is monophasic with an oxidation rate of 0.004 s-1, 

matching the oxidation rate of Orf78 in the absence of PCP.  This suggests there 

is another factor other than substrate recognition that is inhibiting binding of the 

hydroxylase to the PCP, such as the proposed incompatibility with CmlPT 

proposed earlier or the presence of higher dissociation constants between Orf78 

and non-native T-domains.   

1.4 DISCUSSION 

It is necessary to study monooxygenases homologous to CmlA enhance 

the flexibility of enzyme choice when engineering a biosynthetic gene cluster.  

This choice may allow for the recognition of certain modules in a semi-specific 

manner and is important when attempting to build libraries of antibiotic-like 

compounds.  Ideally, the selection of a hydroxylase for an engineered NRPS 

system would be dependent on its solubility in-vivo, redox partners, and its ability 

to properly recognize and utilize cofactors required to perform the necessary 

chemistry.  Experiments in-vitro with Orf78 attempt to discern the viability of 
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combining the use of an enzyme from one pathway with PCP components from 

non-native systems in an effort to discern the specificity of these interactions.  

However, the results do not favor the use of non-native enzymes with NRPS 

systems without modifying their components to promote a higher degree of 

recognition between the two.  Although there is an interaction between Orf78 and 

PCPAsn10, there is no interaction with the non-native aminoacylated-PCPs.   

The oxidation rate of the Orf78/Phe-PCPAsn10 complex does not reach a 

level to be considered biologically relevant, as bacterial defenses would be 

overwhelmed with such slow production.  This contrasts with the oxidation rate 

for CmlA in the presence of L-PAPA-CmlPAT at 12 s-1, rising two orders of 

magnitude higher than any of the rates associated with Orf78.  One argument is 

that the dissociation constant of the interaction is much higher than published for 

other hydroxylase/PCP systems, such as P450sky or P450nikQ, and ratio of PCP 

to Orf78 is too low to visualize quick oxidation.  This led to a slower rate for the 

first phase than would otherwise be observed.  It is currently unknown if there are 

additional interactions between the hydroxylase and the A-domain that assist 

with recognition and helps to guide the interaction.  Unfortunately, the rate for 

CmlA/L-PAPA-CmlPT is unknown, so a true comparison between Orf78/PCPAsn10 

and CmlA/CmlPAT cannot be obtained.  The inability to clone out any soluble 

forms of the AT domains from lysobactin system prevented testing that 

hypothesis with any complexes with Orf78. 

The inability to properly model CmlPT based off of published NMR 

structures suggests potential problems with interactions between Orf78 and 
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CmlPT, explaining the absence of reactivity during oxidation experiments with 

Orf78.  However, is should be noted that the Phe-PPant may not sit correctly on 

the PCP if the para-amino group is influences the interaction of substrate stability 

on the T-domain and destabilizing its binding to the hydroxylase.  In addition, the 

NRPS from the chloramphenicol pathway is unimodular and may not have 

sufficient complexity compared to their multimodular counterparts, meaning the 

modular components of CmlPAT may not be homologous with Type II NRPS 

systems and cannot interact with Orf78.  However, Phe-PCPTyr6 displays a 

monophasic rate comparable to Orf78 alone with O2.  This is surprising since its 

sequence aligns the alpha-helical regions well for PCPTyr6 and PCPAsn10.  

Although the similarity between these two PCPs appear high enough to assume 

some interaction between the hydroxylase and the Phe-PCPTyr6 domain, this 

illustrates the subtlety of the structural differences between the PCPs from these 

two systems and represent the fine-tuning that must occur to properly lock the 

complex into place. 

Although the enzyme purifies as a dimer, the issues concerning the 

protein-protein interaction between an enzyme with a singly-loaded cluster per 

dimer an the PCP domain may affect the kinetic rates, although these effects are 

not known.  The incompleteness of iron-loading may be due to iron lability in the 

unloaded monomer.  Alternatively, the unloaded monomer may be forced into a 

different structural conformation by the loaded monomer and inherently does not 

load upon dimerization.  One example involves the incomplete loading of the 

dimeric diiron enzyme hp53R2, which fully loads one cluster into one monomer 
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but only partially loads the second cluster in the second monomer due to the 

loaded monomer exerting conformation dominance over the partially loaded 

monomer 47.  However, the result for Orf78 differs from CmlA, which purifies with 

two complete clusters per dimer; so nuances concerning the monomeric 

influences for the dimeric form may exist for Orf78.  If the enzyme solely operates 

on the NRPS system, as its placement in the lysobactin operon suggests, then 

there is no need for a two fully-loaded clusters per dimer to do the necessary 

chemistry, as only one monomer could bind at a time to the larger, multimodular 

complex.  Since the unloaded monomer is presumably distorted in a manner that 

prevents iron-loading, it is unknown whether PCPAsn10 will prioritize the loaded 

monomer over the unloaded one.  Additionally, any PCP bound to the unloaded, 

non-catalytic monomer will lower the rate of oxidation since the effective 

concentration of PCP will be lower than previously calculated.  The PCP 

concentration is already poised for sub-pseudo first order kinetics with only a 

four-fold excess to Orf78, so the effective concentration will be halved at two-fold 

to Orf78, assuming the PCP binds with equal preference for each monomer.  

Alternatively, PCP binding to one monomer may inhibit binding to the unbound 

monomer.   

1.5 CONCLUSION 

Orf78, the hydroxylase from the lysobactin biosynthetic pathway, was 

purified and characterized as a dimeric, diiron enzyme.  The hydroxylated PCP 

domains from the lysobactin pathway are compared to view similarities in 

homology as well as to compare them to non-native hydroxylated PCPs from the 
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Type I NRPS teicoplanin and Type II NRPS chloramphenicol biosynthetic 

pathways.  Oxidation experiments were performed to test for protein-protein 

interactions between these PCPs and Orf78, with the only interaction recorded 

with Orf78’s native T-domain, PCPAsn10.  The reasoning for some T-domains 

being hydroxylated and not others is still an aspect of ongoing research by both 

our and other labs. 
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Figure 1.1:  Diagrams of the hydroxylation reaction with P450sky and the 
lysobactin antibiotic.  Top panel - a diagram of the pre- and post-hydroxylated 
PCP with affected amino acids.  Bottom panel – a diagram of the depsipeptide 
antibiotic lysobactin.  Red lettering indicates the locations of hydroxylation by 
Orf78. 
 
 

 
 

Figure 1.2:  Diagrams of Orf78 endogenous ligands and the active-site 
structure.  Top panel – sequence alignment for the endogenous iron ligands in 
the diiron hydroxylases associated with the biosynthesis of lysobactin (Orf78), 
chloramphenicol (CmlA), and teicoplanin (Orf12).  Bottom panel – a diagram of 
the proposed active site symmetry for Orf78 based off of the crystal structure of 
CmlA. 



www.manaraa.com

35 
 

 
 
 
 

 
 
Figure 1.3:  Size-exclusion chromatography plot of Orf78.  The elution profile is 
present in the insert.  25 µM protein was directly injected onto the column 
following purification.  The elution profile shows a dimeric form of the enzyme 
with no peaks suggesting monomeric or other oligomeric forms of the protein, 
with extraneous peaks eluting earlier and later being contaminants present 
during purification.   
 
 

 
Figure 1.4:  Reductive titration of Orf78. The plot shows the bleaching of the 
band at 340 nm as sodium dithionite reduces the enzyme from the diferric to the 
diferrous state.  The inset shows a plot of the titration points and show the 
requirement of 2.3 electrons to fully reduce the enzyme, confirming the presence 
of a diiron cluster. 
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Figure 1.5:  Optical spectrum of Orf78 incubated with sodium azide.  3.5 
µM enzyme was incubated with 8 M sodium azide, 100 mM HEPES, pH=7.5.  
The pronounced peaks at 340 nm and 460 nm are due to enhancements of the 
charge-transfer bands between the two iron atoms caused by the addition a 
bridging azide molecule. 
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Figure 1.6:  EPR spectra of mixed-valent Orf78, dithionite saturation, 
power saturation, and temperature saturation.  Top left – mixed-valent EPR 
spectrum of 200 µM Orf78.  Top right – EPR spectra of Orf78 with 0.4, 0.8, 1.0, 
and 2.5 molar equivalents of electrons, demonstrating the transition from the 
diferric to mixed-valent to diferrous state.  Bottom left – temperature saturation of 
the mixed-valent signal.  The signal bleaches as temperatures reach 40K, 
indicating the presence of a hydroxo-bridge between the two iron atoms.  Bottom 
right – three spectra of the mixed-valent sample demonstrating the relationship of 
signal degradation as a function of increasing power. 
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Figure 1.7:  Power saturation curve for Orf78 at 10K.  The sample 
consists of 200 µM mixed-valent Orf78.  The half-saturation value is 2 mW higher 
than CmlA, but reasonably similar to justify assignment of the same J coupling 
constant. 
 
 

 
 

Figure 1.8:  Molecular models for PCPAsn10, PCPTyr6, and CmlPT.  Models 
of PCPTyr6 from the teicoplanin pathway and CmlPT from the chloramphenicol 
pathway based off of a model of PCPAsn10 from the lysobactin pathway (derived 
from PDBID# 1DNY).  The panel on the right duplicates the models on the left 
but with a 90o rotation.  Note the absence of two terminal helices for CmlPT that 
do not align in the model. 
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Figure 1.9:  Sequence alignment for PCPs from lysobactin, teicoplanin, 
and chloramphenicol pathways.  Sequence alignment showing homology among 
the three hydroxylated PCPs for lysobactin (green), lysobactin PCPs with the 
addition of the PCP from teicoplanin (blue), and also lysobactin and teicoplanin 
PCPs with the addition of the PCP from chloramphenicol (red).  There is slight 
drop in homology between the lysobactin and teicoplanin PCPs, both derived 
from Type I NRPSs.  The homology heavily decreases upon the addition of the 
chloramphenicol PCP, derived from a Type II NRPS. 
 
 

 
 

Figure 1.10:  Oxidation of reduced Orf78 with aminoacylated PCPs.  25 
µM reduced Orf78 was shot against either a four-fold excess of L-phe-PCPAsn10, 
ten-fold excess of L-phe-PCPTyr6, or ten-fold excess of L-phe-CmlPT and 1 mM 
O2.  The results are biphasic for Orf78’s native PCP, but monophasic for the two 
non-native PCPs. 
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Table 1.1: Sequence identity of 3 cognate and 2 non-cognate PCPs for P450sky 
 

 
 

The average identity of the three lysobactin PCPs is between 40%-60%.  
The identity of those three to the teicoplanin PCP drops to 30%.  Furthermore, 
their identity compared to the PCP from Chloramphenicol is further lowered to 
20%.   
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CHAPTER 2 

DETERMINATION OF THE ROLE OF A NON-RIBOSOMAL PEPTIDE 

SYNTHETASE IN THE RECOGNITION OF A NON-COGNATE TAILORING ENZYME 

2.1 INTRODUCTION  

Bacterial synthesis of antibiotics has been intensively studied over the 

past three decades, but have not ranged beyond the analysis of individual 

biosynthetic pathways.  As more of the individual components of the machinery 

are elucidated, the creation of novel synthetic pathways that are transformable 

into a bacterial host for the mass production of new products are providing a 

natural change in direction for future research.  Alteration of currently understood 

non-ribosomal peptide synthetase (NRPS) systems provides a basis for this 

research; however, their use in conjunction with cognate tailoring enzymes may 

enhance the range of possible products.  Although these cognate enzymes have 

been elucidated in several systems 1-7, their interactions with the NRPS subunits 

are unclear, as well as their potential interactions with non-native systems.  An 

understanding of how these processes behave may assist in the choice of gene 

combinations, potentially from multiple pathways, necessary to form newly-

designed operons that are capable of synthesizing a new natural product.   

The number of biosynthetically derived antibiotics vary greatly due to the 

system-dependent combinations of both natural and non-natural amino acids that 
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may be incorporated during the peptide synthesis.  Each system is driven 

by NRPS-specific modules that choose, modify, and incorporate the amino acids 

that form the final product.  This leads to a multitude of potential enzymes and 

domains that specialize in substrate selection and potential chemical 

modification.  A couple of well documented examples include the lactonization of 

skyllamycin by a thioesterase as well as the incorporation of sugars onto the 

peptide backbone of vancomycin by methylases 8, 9.  To further narrow the 

reaction specificity involving sugar incorporation above, dehydrogenases have 

been observed that are selective for either O- or N-methylation in various 

pathways 10-13.  To stress the importance of these chemistries, these types of 

translational and post-translational modifications act as inhibitors of cellular 

function within a target cell necessitating that the producer counteract the effects 

of these inhibitors while the antibiotic producer contains immunity to their effects 

14, 15, as is the case with the methyltranferase Cfr in S. aureus, a protein 

responsible for the methylation of several residues on the 23S ribosomal RNA 

that inhibits the binding of chloramphenicol 16.  

The creation of a synthetically created antibiotic biosynthesis pathway is a 

major milestone for researchers, as it will allow for the formation and testing of 

compounds different from those found in nature.  Theoretically, the effects of 

these compounds would be difficult for bacterial targets to overcome since the 

scaffold of their resistance machinery cannot compensate for compounds with 

greatly different chemical properties from those already present.   One likely 

avenue of study is the manipulation of existing pathways that may lead to the 
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discovery of new drugs, including techniques that create a plug-and-play system 

that can create libraries of similar compounds through modifications of simple yet 

necessary chemistries that can be tested for antibiotic effectiveness.  An 

example is the incorporation of different chemistries through the use of enzymes 

that operate as individual in trans modifiers, rather than in cis domains that are 

incorporated into the NRPS machinery 5, 17, 18.  For example, hydroxylases such 

as P450sky (CYP163B3) are expressed as gene product independent of its 

NRPS within the skyllamycin biosynthetic operon 8.  Not only is the protein more 

likely to be soluble since it is not excised from a larger complex, but the residues 

that form the recognition interface may be used to modify an NRPS module for 

hydroxylation.  Attempts to incorporate an enzyme into an NRPS module may 

lead to instability due to interference with the inter-modular interactions 

necessary for the incorporation and passing of the amino acids through the 

NRPS machinery 19, 20.  Therefore, it is best to avoid direct modification of the 

NRPS modules. 

Since the addition of a separate, individual protein is less troublesome 

than the modification of an existing module, the former became the focus of this 

research utilizing P450sky from the skyllamycin biosynthetic pathway.  Work by 

Cryle et al has demonstrated that P450sky is a monooxygenase that incorporates 

a hydroxyl group into the beta carbon of L-leucine, O-methyl-L-tyrosine, and L-

phenylalanine while appended on the thiolation-domain during the synthesis of 

skyllamycin 21.  The P450 contains a thiolate-ligated porphyrin cofactor in the 

protein’s active site that receives electrons from a ferredoxin that docks on the 
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proximal face of the enzyme.  The structure of the protein shows a deep channel 

from the surface residues to the porphyrin (~23 Angstroms).  The F and G 

helices are culpable for the binding of the T-domain, although the exact residues 

responsible are unknown 22.  Interestingly, the crystal structures published by 

Cryle et al. suggests that there is minimal conformation change between the 

unbound state and the bound state (PDB ID: 4PWV, 4LOF; this work).  A crystal 

structure showing P450sky bound to PCPTyr7 of the skyllamycin pathway by way 

of ligation of an PPant-imidazole ligand to the heme iron suggests that the 

interactions are driven by hydrophobic residues at the interface (PDB ID: 4PWV).   

The overall hydrophobic character of the skyllamycin antibiotic allows for 

the inhibition of the mechanism involved with the biosynthesis of the bacterial cell 

wall.  However, the presence of multiple hydrophobic residues decreases its 

solubility - allowing for an evolutionarily viable explanation for the addition of 

hydroxyl groups to the peptide.  Other residues were also tested, mostly 

consisting of hydrophobic L-, and D-amino acids on all three T-domains.  The 

results concluded that D-amino acids are not hydroxylated and non-cognate 

amino acids (tryptophan and tyrosine) were only hydroxylated with reduced 

efficiency.  There were no tests on amino acids with charged side chains to 

determine their effectiveness for hydroxylation.  Therefore, the tethered amino 

acid does appear to play a small, but important, role in the overall recognition of 

the hydroxylase to the substrate-bound carrier.  The structure of the imidazole-

ligated T-domain shows interactions with side chains in the channel with the 

PPant residue that extends toward the active site from the T-domain, enhancing 
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the binding interface.  However, there is currently no evidence of complex 

formation with the apo- or holo-T-domain, as there is no product to test for 

activity.  The understanding of the hydrophobic nature of the interaction is not yet 

understood, as no experiments have been performed under high-salt conditions.     

P450nikQ (CYP162A1), an enzyme that operates in trans to the NRPS in 

the nikkomycin biosynthetic pathway and is homologous to P450sky, interacts 

with a unimodular NRPS (NikP1) and is responsible for the β-hydroxylation of a 

tethered histidine residue.  Both genes are located within the same operon and 

are expressed as single proteins.  P450nikQ and P450sky share an amino acid 

sequence similarity of 53.3% along with a sequence identity of 33.6%, allowing 

for a reasonable comparison of the two as homologs.  A model of P450nikQ 

based on the substrate-free P450sky structure (PDB ID: 4L0F), shows a 

preference of polar residues leading to the active site of the enzyme, whereas 

P450sky contributes mostly hydrophobic residues with a preference for 

phenylalanine.  These residues may assist in guiding the tethered amino acid 

through the channel and may dictate which side chains are acceptable for 

recognition by the enzyme.  The exterior surface of the enzymes shows little in 

shared similarity, other than a patch of cationic residues on the surface proximal 

to the porphyrin that presumably binds an unidentified ferredoxin.  The binding 

interfaces for the P450s that are involved with their interactions with the T-

domains show little similarity, consisting of residues that often differ in polarity.  

This is important given that the high amount of similarity between the T-domain 

for NikP1 and PCPTyr7, (51.3% identity and 35.5% similarity) would imply that 
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both P450 enzymes would be able to recognize T-domains from each other’s 

systems.  This gives credence to the conclusions by Cryle et al. concerning 

hydrophobic forces driving the interaction with the enzyme and the NRPS. 

Under canonical conditions involving redox partners, the shift from a low-

spin to high-spin state raises the potential of the enzyme, a gating behavior 

necessary to deter the unnecessary transfer of electrons to enzyme that is not 

substrate-bound and decreases the production of subsequent radical oxygen 

species 23.  The rise in potential originates from the movement of an electron 

from a lower energy orbital to a higher energy orbital, instigating a state of 

greater reactivity with molecules that are in energetically low triplet state, such as 

molecular oxygen.  P450sky, to the contrary, does not exhibit a spin-shift upon 

binding with aminoacylated NikP1AT due to its ferric high-spin redox potential 

resting around -300 mV, lower than CYP101A1 which has potentials for low-spin 

at -303 mV and high-spin at -173 mV 24, 25.  Among the differences between the 

homologs, there is a small, observable shift from low-spin to high-spin for 

P450sky upon the addition of the L-Tyr-PCPTyr7 carrier protein, indicating that the 

redox potential for the bound species is higher in P450sky.  Due to the lack of 

high-spin for P450nikQ, Wise confirmed through an EPR titration that L-His-

NikP1AT binds with P450nikQ, along with the unexpected result of the histidine 

side group ligating to the iron of the porphyrin.  Using this method of analysis, the 

dissociation constant was judged to be between 50-100 µM and there is currently 

no evidence suggesting a reason for this high of a KD. 
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The formation of peptide-based antibiotics requires a modular system that 

may be uni- or multimodular, where each module contains multiple domain units 

that cooperate for the creation of the antibiotic.  The skyllamycin biosynthetic 

pathway involves 11 modules in the creation of the depsipeptide, with each 

module involved in the activation and incorporation of a specific amino acid.  The 

size of these systems, ranging from 70 kDa for the unimodular nikkomycin NRPS 

to greater than 1.0 MDa with the 8 module syringomycin NRPS and the 11 

module cyclosporine A NRPS, inhibit easy study since solubility may necessitate 

potential interactions among other modules within the system 26, 27.  Recent 

studies of these multimodular pathways have focused on excising certain 

domains or modules and observing the synthesis of small portions of the 

antibiotic or the conferrence of specificity towards particular amino acids 7, 28, 29.  

However, it is difficult to understand the interactions between an enzyme 

operating in trans to a NRPS utilizing such a technique.  There may be 

interactions between the enzyme and areas on the NRPS that may not have 

been excised for study, either other domains within the same module or even 

between other modules within the NRPS pathway and the exogenous enzyme.   

One method to bypass this obstacle is to observe a unimodular system 

containing a minimum number of domains.  In this manner, the interactions 

between an exogenous enzyme and an NRPS can be studied without the loss of 

other, more complex interactions. 

The biosynthetic mechanism for the creation of these antibiotics begins with 

tethering an amino acid to a phosphopantetheine (PPant), derived from 
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Coenzyme A (CoA) and ligated to a Thiolation (T) domain, which assists with 

transportation of the substrate throughout the module.  The importance of the T 

domain cannot be understated as it inability to determine the substrate leaves it 

potentially open for the hydroxylation of any amino acid residue that is attached 

to it or improper protection of the attached amino acid, depending on its 

positioning post-attachment 5, 21.  The T-domain is subsequently covalently-

attached to an Adenylation (A) domain, which activates a specific amino acid to 

be incorporated into the nascent peptide chain of the antibiotic and attaches the 

residue to the T-domain 30, 31.  The final covalently-attached domain that is 

integral for multimodular NRPS systems is the Condensation (C) domain, whose 

importance lies in accepting the nascent chain from the immediate upstream 

module and incorporating the amino acid of the current module into the growing 

chain 29, 32.  The formation of these individual modules must facilitate interactions 

with the PPant and the active sites of both the A and C domains, which 

necessitates constant and drastic conformational shifts as the machinery 

operates to extend the length of the peptide.  The final module of the pathway 

contains a Thioesterase (TE) domain, which cleaves the peptide from the NRPS 

complex or promotes the formation of a depsipeptide through the formation of an 

intramolecular ester 33, 34.   

The complexity of the multimodular system makes it difficult to synthetically 

produce biosynthetic pathways, so a more viable route is to study a unimodular 

system.  The status of P450sky as a homolog of P450nikQ qualifies the use of 

the NikP1 NRPS system for this cross-platform study.  NikP1 is a unimodular 
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complex consisting of an A and T domain that activate and, in the presence of 

P450nikQ and its associated redox partners, β-hydroxylate a histidine residue.  

Other than data supporting general hydrophobicity, the characteristics describing 

the interaction between P450nikQ and NikP1 have not been previously 

elucidated, so it is unclear which surface residues are necessary for their 

interaction.  It is not currently understood if there is a role for electrostatic 

residues necessary for a catalytically-relevant binding motif.   

Wise collected data by size-exclusion chromatography demonstrating that 

P450nikQ binds in the presence of apo and aminoacylated forms of NikP1, but not 

the holo form.  The solved structure of an excised di-domain derived from the 

gramicidin biosynthetic pathway (PDBID: 5ES6) show that the holo form is locked 

into a conformation where the T domain is locked into the A domain, awaiting 

aminoacylation 35.  This may be informative in discerning which intermediate 

conformations of the NRPS are available for binding by an exogenous enzyme.  

The elution times from the SEC are variable depending on whether P450nikQ is 

interacting with the apo or aminoacylated forms, with the correct molecular 

weight calculated when bound to the aminoacylated form but an earlier elution 

time for the apo.  This was concluded to be different geometries of the complex 

formed between P450nikQ and NikP1.  However, there have been no studies 

detailing what these possible conformations could involve. 

Although the T-domain is catalytically inert, the presence of a PPant is 

necessary for the interaction between itself and other modules/tailoring enzymes, 

even without conformational changes between the apo and holo forms of the 
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protein 22, 36.  Prior to the binding event, the loaded T-domain may coil the PPant 

around its own four-helix bundle, similar to the behavior of the acyl-PPant 

attached to acyl carrier proteins 37-39.  This “switchblade” mechanism protects the 

thioester bond from hydrolysis when present in the reducing, aqueous 

environment of the cell.  This also allows surface residues of the T-domain to 

remain exposed for recognition by exogenous enzymes.  This motif has not been 

observed in any holo constructs of PCP domains, so the location of the PPant 

during the intermediates involved between attachment of the PPant and 

aminoacylation of the T-domain have not been elucidated.  The sites of 

interaction for the amino acid reside itself are not presently understood, but the 

selectivity for the beta position of the amino acid suggests that the amine may be 

stabilized by residues in the protein active site.  It is currently unknown how 

dissociation of the enzyme from product-bound NRPS is triggered and if 

structural changes of the enzyme or NRPS, or a combination of the two, may be 

involved.  

In this chapter, binding affinities between NikP1 and its cognate and non-

cognate P450 hydroxylases will be probed.  This is done through small molecule 

titration assays.  In addition, EPR data recording the interaction from the 

perspective of both the porphyrin and the substrate is reported with results 

suggesting the non-cognate P450sky binds to the A-domain with no affinity to the 

native L-histidine substrate. 
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2.2 MATERIALS AND METHODS 

Sub-cloning of P450sky 

The codon-optimized gene for P450sky was purchased from DNA 2.0 in a pJex 

vector containing a T5 promoter and C-terminal 8x polyhistidine tag.  The 

sequence included flanking restriction sites in the following pattern, 5’-NdeI-

P450sky-XhoI-3’.  The gene was subsequently sub-cloned into a pET21b vector, 

which included a T7 promoter and an N-terminal 6x polyhistidine tag. 

Expression of P450sky 

The plasmid was transformed into chemically competent BL21 (DE3) cells that 

have been previously transformed with pChuA (purchased from Addgene: 

plasmid #42539; deposited by Alan Jasanoff).  This vector allows for the uptake 

of porphyrin from the media, ensuring that the rate-limiting step in the P450 

biosynthesis is not the lack of Fe-Protoporphyrin IX 40.  A single colony was 

transferred to an overnight starter culture and 10 mL were transferred to 

inoculate each liter of media, which consists of the following for 500 mL:  12 g 

tryptone, 1 g peptone, 12 g yeast extract, 0.5% glycerol, 50 mM potassium 

phosphate, dibasic and potassium phosphate, monobasic, pH=7.1.  The following 

additives were included to enhance native peptide and porphyrin production prior 

to the induction of the chuA plasmid: 10 mM casamino acids, 5 mM δ-

aminolevulinic acid, and 1 mM Thiamine-HCl.  Antibiotic resistance genes were 

activated on each plasmid with 50 mg/L kanamycin and 100 mg/L ampicillin.  The 

culture grew at 37oC, 210 rpm until the OD600=0.65, at which point the 

temperature was reduced to 20oC and 5 mg/L of hemin (in DMSO) was added to 
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each flask.  After 30 minutes, both genes were induced with 50 µM IPTG and the 

culture incubated for an additional 18 hours prior to harvesting.  The culture was 

centrifuged at 6000 rpm for 15 minutes and stored at -80oC until purified. 

Purification of P450sky 

The cell pellet was resuspended in 250 mL of buffer consisting of 50 mM Sodium 

phosphate, monobasic, 300 mM Sodium chloride, and 10 mM imidazole (Buffer 

A).  The solution was sonicated seven times on two minute cycles followed by 5 

minutes of stirring on ice.  The lysate was cleared by centrifugation at 16000 rpm 

for 35 minutes and the supernatant loaded onto a 50 mL column of Ni-NTA resin 

pre-equilibrated with Buffer A.  The column was washed with Buffer A + 10 mM 

imidazole followed by elution with Buffer A + 240 mM imidazole.  The eluent was 

concentrated and dialyzed twice in 4 L of 50 mM HEPES, pH=7.5, 10% glycerol. 

After dialysis, the protein was loaded onto a 50 mL column containing 

diethylaminoethyl (DEAE) anion-exchange resin pre-equilibrated with 50 mM 

HEPES + 5% glycerol (Buffer B).  The protein was subsequently washed with 

Buffer B + 20 mM sodium chloride followed by a gradient elution in Buffer B 

supplemented with 50 mM – 300 mM sodium chloride over a 300 mL volume.  

The fractions containing absorbance A417/280 >1.1 were pooled and dialyzed 

twice in Buffer B, concentrated to a manageable volume, and flash-frozen for 

storage at -80oC. 

Expression of holo-NikP1AT 

The expression procedure has been outlined in 24.  Briefly, the plasmid containing 

the gene-of-interest was transformed into chemically competent BL21 cells co-
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transformed with sfp plasmid.  A starter culture was created with a single colony 

and 10 mL of the starter were inoculated per liter of culture, which consists of 

Luria-Bertani broth + 50 mg/L of Kanamycin.  The cultures were grown at 37oC 

until an OD600=0.8 was reached, when the temperature was lowered to 18oC.  

After 30 minutes, the vectors were induced with 200 µM IPTG and the cultures 

incubated for 20 hours.  The culture was then spun down at 6000 rpm for 15 

minutes and stored at -80oC. 

Purification of holo-NikP1AT 

Cells were resuspended in 350 mL of Buffer A and sonicated 10 times 

with 2 minute cycles with a 5 minute break between cycles.  The lysate was 

cleared by centrifugation at 16000 rpm for 60 minutes and the supernatant was 

loaded onto a 50 mL Ni-NTA column pre-equilibrated with Buffer A.  The column 

was washed with Buffer A + 10 mM imidazole, eluted with Buffer A + 240 mM 

imidazole, and 5 mL fractions collected.  Protein was isolated by observing the 

absorbance at A280, with these fractions pooled and concentrated prior to 

dialyzing twice in 2 L of 100 mM HEPES, pH=7.5 + 10% glycerol.  Following 

dialysis, the protein was further purified using a S-200 Size Exclusion 

Chromatography (SEC) column equilibrated with 100 mM HEPES, pH=7.5.  The 

purity of the fractions was determined by SDS-PAGE, with the fractions 

containing the highest purity pooled and concentrated, flash-frozen, and stored at 

-80oC. 
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Cloning of PCPTyr7 

The codon-optimized gene for PCPTyr7 was purchased from DNA 2.0 and 

shipped in a pJex vector containing a T5 promoter and C-terminal Fh8 calcium-

dependent protein serving as an HIC affinity tag 41.   The gene was subsequently 

cloned into a pDB.His.GST vector containing the following sequence: 6xhis-GST-

TEV-PCPTyr7 using the following primers (restriction sites are italicized): 

Forward: 5’-agagtgGAATTCgctccgggtccagac-3’ 

Reverse: 5’-agagtgCTCGAGttagccaccgatcagcac-3’ 

The gene was amplified using Pfu polymerase (Addgene plasmid #12509) 

42 and a BioRad T100 Thermo Cycler for 35 cycles using the following conditions:  

denature- 50 sec at 94oC, anneal- 50 sec at 66oC, elongation- 2 min 15 sec at 

73oC.  The PCR product was gel-purified and digested overnight at 37oC with 

EcoRI and XhoI.  The digest mixture was again gel-purified and ligated to 

similarly digested vector with T4 DNA ligase (Promega) overnight at room 

temperature.  Plasmid was extracted from several colonies and the integrity of 

the gene was verified by sequencing at Eton Bioscience, Inc.  

Expression of apo-PCPTyr7 

The plasmid was transformed into chemically competent BL21 (DE3) cells 

and a single colony used to inoculate a starter culture.  10 mL of the starter 

culture were used as inoculant per 1 L of Luria-Bertani broth and the culture 

incubated at 37oC until the OD600=0.6.  Upon reaching the OD, the temperature 

was dropped to 30oC and the cultures were incubated for an additional 30 

minutes followed by induction with 200 µM IPTG and shaken for 20 hours at 210 



www.manaraa.com

55 
 

rpm.  The cells were then centrifuged at 6000 rpm for 15 minutes and stored at -

80oC. 

Purification of apo-PCPTyr7 

The pellet was resuspended in Buffer A and sonicated 10 times with 2-

minute cycles and intermittent 5 minute breaks.  The lysate was cleared by 

centrifugation at 16000 rpm for 30 minutes and the supernatant loaded onto a 30 

mL Ni-NTA column pre-equilibrated with Buffer A.  The column was washed with 

Buffer A + 10 mM imidazole and the protein eluted with Buffer A + 240 mM 

imidazole.  The eluent was dialyzed twice in 2 L 100 mM HEPES, pH=7.5, 100 

mM sodium chloride.  The protein was concentrated, flash-frozen, and stored at -

80oC. 

Synthesis of Bodipy-Coenzyme A 

This procedure is a modified version from 43.  10 mg of Coenzyme A (CoA, 

Sigma-Aldrich) were dissolved in acetonitrile with 2 mg of Bodipy-FL (Thermo 

Fisher Scientific) in a dark environment.  The reaction was stirred at room 

temperature for 5 minutes prior to incubation at 4oC for an additional 3 hours.  

The free Bodipy-FL was extracted several times with a 15-fold excess of ice-cold 

diethyl ether.  The acetonitrile phase was dried in the dark under a stream of 

nitrogen gas to concentrate the material and evaporate residual diethyl ether.  

The solution was aliquoted and stored at -80oC. 

Verification of T-domain/SfP interaction  

Approximately 100 µM of the holo-NikP1AT was mixed in a solution that 

contained 50 mM HEPES, pH=8.0, 250 µM Bodipy-CoA, 200 nM SfP, and 200 
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mM magnesium chloride.  The reaction was incubated for 1 hour at room 

temperature and the reaction mixture was separated on a 12% SDS-PAGE gel 

with the location of the Bodipy-CoA verified via transilluminator at 300 nm.  

Batches that did not contain Bodipy at the same molecular weight as the protein 

were used immediately for downstream experiments.  Batches that did contain 

Bodipy at the protein’s molecular weight were considered apo- protein and the 

batch was subsequently treated with free CoA in the presence of SfP. 

In a similar manner, the serine residue on the PCP necessary for 

phosphopantetheine transfer was verified to be exposed using the same 

technique as holo-NikP1AT.  However, unlike the AT domain, SDS-PAGE was 

used to verify the presence of Bodipy at the molecular weight of the GST-PCPTyr7 

fusion product.  If Bodipy was not present at the correct molecular weight, the 

protein batch was discarded with the assumption that it was irreparably 

misfolded. 

Aminoacylation of holo-NikP1AT with L-Histidine 

The reaction conditions are modified from previous procedures 24, 44.  A 

reaction mixture of containing 50 mM HEPES, pH=8.0, 200 mM magnesium 

chloride, 20 mM L-Histidine, and 200 µM holo-NikP1AT were incubated at room 

temperature for 1 hour followed by incubation at 4oC for 1 hour.  The solution 

was desalted into 100 mM HEPES, pH=7.5 followed by verification by SEC, 

which also served as a purification step to remove non-aminoacylated NRPS.  

The protein was flash-frozen and stored at -80oC. 
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UV-Vis measurements 

All measurements were made on an Agilent 8453 UV-Vis 

Spectrophotometer using quartz cuvettes (Starna Cells, Inc.) with a path length 

of 10 mm and a 4 mm slit width with or without an anaerobic screw-cap.  The 

ferric spectrum was obtained by adding 5 µM protein with 50 mM HEPES + 0.3 

molar equivalents of methyl viologen and degassing for 15 minutes prior to a 

spectrum being taken.  The reduced species was observed by taking the ferric 

sample and adding 1.5 - 2 molar equivalents of sodium dithionite.  The ferrous-

CO complex was produced by adding carbon monoxide to the reduced species 

and obtaining a spectrum after several seconds.  The spectrum of the 

P450sky/His-NikP1AT complex involved incubating 5 µM of P450sky with 10 µM 

His-NikP1AT on ice for 1 hour, centrifuging the sample at 4oC at 16000 rpm for 

10 minutes and observing the signal.   

Titrations were carried out on P450sky with imidazole and sodium 

cyanide, two ligands that bind tightly to more traditional P450s, such as 

CYP101A1.  100 µM imidazole was titrated into 5 µM enzyme and incubated for 

one minute for each data point, for a total of ten.  Separately, 5 mM sodium azide 

was titrated with 5 µM P450sky and incubated for 1 minute for each data point, 

for a total of ten.  These data were analyzed using OriginPro 8.6 software, with 

the dissociation constants determined by fitting with the Michaelis-Menten 

equation. 

 

 



www.manaraa.com

58 
 

Characterization of the P450sky/His-NikP1AT complex 

In an Eppendorf tube, a mixture of 10 µM P450sky and 100 µM His-

NikP1AT were incubated on ice for 2 hours then spun down at 4oC at 16000 rpm 

for 5 minutes.  The protein mixture was then run through a 0.22 um filter and 

injected onto an ATKA FPLC (GE Healthcare) equilibrated with 100 mM HEPES, 

pH=7.5 and 150 mM sodium chloride.  The flow rate was set to 0.15 mL/min and 

a fraction collector was set up to collect in 0.5 mL aliquots.  Following the run, the 

fractions were observed on the UV-Vis at both 280 nm (aromatic residues) and 

417 nm (heme).  The heme-containing fractions were verified on a 12% SDS-

PAGE gel to confirm the presence of both proteins. 

Measurement of the P450sky-oxy complex by Stopped-flow 

The measurement of the decay rate of the ferrous-oxy complex was 

performed on an SX20 Stopped-flow spectrophotometer (Applied Photophysics) 

for accurate visualization and rate measurements.  The temperature of the 

experiment was set to 4oC and data was collected either utilizing a PDA set up in 

logarithmic mode for 1 second with 1000 time points or using a PMT detector 

with 5000 time points.  5 µM of P450sky in 50 mM HEPES, pH=7.5 with the 

addition of 0.3 molar equivalents of methyl viologen was degassed with nitrogen, 

reduced with two molar equivalents of sodium dithionite, and loaded onto syringe 

A, previously washed with sodium dithionite followed by degassed buffer.  

Syringe B consists of 50 mM HEPES, pH=7.5 supplemented with 2 mM O2.  The 

data was visualized as well as fit to a single exponential using Applied 

Photophysics Pro-Data SX software. 
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EPR measurements 

Spectra of the low-spin enzyme were collected on an EMXplus X-band 

EPR (Bruker) at 16K with 12 mW power and a microwave frequency of 9.834 

GHz.  20 scans from 400-4000 gauss were averaged to obtain a final spectrum.  

The data were collected and analyzed on either Bruker Xenon software suite or 

the SpinCount software package.  Determination of the g-values were performed 

by the use of the equation g = (71.4484v) / B, where magnetic field, B (mT) and 

the microwave frequency, v (GHz).  Ferric samples were set up with 200 µL of 

800 µM protein as-purified, pipetted into an iron-free quartz EPR tube, and flash-

frozen in liquid nitrogen.  Ferrous samples involved 200 µL of 400 µM enzyme 

and reduced anaerobically in the presence of 0.3 molar equivalents of methyl 

viologen and excess sodium dithionite.   

Crystal structure of substrate-free P450sky 

The as-purified enzyme was diluted to a 5 mg/mL concentration for use in 

the crystallography wells.  The mother-liquor consists of 225 mM ammonium 

chloride, 20% PEG 6000 and drops were set up using a hanging-drop method 

with 2 µL mother-liquor followed by the addition of 2 µL of protein.  The trays 

were then stored at 25oC with crystals forming after an average of 7 days in the 

form of thick plates approximately 500 µm in length.  The crystals were incubated 

in 25% glycerol as a cryo-protectant and flash-frozen in liquid nitrogen for 

shipping to SER-CAT at the Argonne National Laboratory.  Data were collected 

on beamline 22ID using a 1 second exposure time per frame.  A total of 180 

frames were collected and used for data reduction.  The diffraction images were 
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integrated by Dr. Lesa Offermann, whom also performed molecular replacement 

on the data using a previously solved P450sky structure (PDBID: 4L0E) as a 

template.  The process of structure refinement was carried out with winCOOT 

and Phenix 45. 

2.3 RESULTS 

Small ligand binding of P450sky 

The purified protein exhibits a Soret maximum at 417 nm (Figure 2.1), 

typical of low-spin P450s 23.  The A417/280 is around 1.5, indicating a pure sample 

of enzyme as determined by SDS-PAGE.  The extinction coefficient was 

determined to be 118 mM-1cm-1 as determined by the pyridine hemochromagen 

assay 46, in close agreement with the  115 mM-1cm-1 extinction coefficient 

observed for some other P450s, e.g. CYP101A1 47. 

The addition of small molecule ligands can gauge the accessibility of the 

heme-active site of the enzyme to the outside environment.  The addition of 

imidazole to P450sky results in a change of the Soret maximum from 417 nm to 

424 nm (Figure 2.2), which is the typical for the addition of a nitrogen-containing 

ligand bound to the distal site of a thiolate-bound heme 48.  The calculated KD for 

imidazole is 732 μM, which is roughly two orders of magnitude larger than for 

P450s that recognize and metabolize a variety of small molecules 49, 50.  The KD 

of P450sky in the presence of L-His-NikP1AT is 703 µM, demonstrating no 

effective change in small molecule entry and binding in the pocket (Figure 2.3).  

The addition of a smaller and anionic ligand, such as cyanide, also demonstrates 

difficulty in accessing the active site of the protein. The Soret of the enzyme 
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shifts from 417 nm to 430 nm (Figure 2.4).  Fitting this spectroscopic change 

results in a KD of 19.8 mM, which is around one order of magnitude higher than 

prototypical P450s, such as CYP101A1 or CYP102A1 51, 52.  This low affinity for 

small molecules may be insightful given the necessity for an enzyme/PCP 

complex for amino acid hydroxylation.  It is possible that, in the absence of T-

domain binding, that access through the active-site channel is restricted.  

SEC profiles for the P450sky/L-His-NikP1AT complex 

A complex is formed between P450sky and the loaded NikP1AT didomain, 

with elution peaks for P450sky at 58 mins, L-His-NikP1AT at 54 mins, and the 

complex at 48 mins, which generates a shoulder that pre-elutes with the AT 

domain.  However, the additive molecular weight of the complex is off the column 

is smaller than what is calculated.  The elution profile resembles the timing for 

the P450nikQ/apo-NikP1AT complex rather than the P450nikQ/L-His-NikP1AT 

complex.  This suggests that P450sky is either interacting with the A-domain in a 

non-catalytic manner reminiscent of the P450nikQ/apo-NikP1AT interaction or 

this method of binding inherently favors a different geometry with the complex.  

As previously mentioned, there is no change in the spin-state with L-His-NikP1AT 

when incubated with P450sky, so the complex may not be catalytically relevant 

due to the lack of any interaction with the T-domain (Figure 2.5).  

Binding of P450sky with apo-PCPTyr7 

There appears to be no binding between the apo-PCPTyr7 and P450sky.  

This may be due to multiple factors, including that the T-domain is still attached 

to the GST solubility tag or, as mentioned earlier, an inability for T-domain 
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binding in a form other than the aminoacylated state.  However, the ability for SfP 

to recognize the core of the protein in order to transfer the PPant to the serine 

residue shows that the serine’s surrounding residues are available for 

recognition.  Aside from solubility issues stemming from cleavage of the solubility 

tag from the T-domain, there is difficulty discerning between 50 kDa and 60 kDa 

on an S-200 SEC column and facilitates the necessity for a larger tag in order to 

notice the difference between the bound and unbound forms of P450sky.  The 

inability to bind to the apo T-domain suggests that there may be non-catalytic 

binding with the A-domain of the aminoacylated NikP1AT didomain and that the 

A-domain provides some level of recruitment for the P450 after the transfer of the 

PPant by the pathway’s native phosphopantetheinyl transferase.  This also 

supports observations made with the nikkomycin system, which demonstrates no 

complex formation between P450nikQ and the holo-didomain (possibly due to a 

different modular conformation), but some type of complex formation with the 

apo- and aminoacylated-didomain. 

The addition of excess L-His-NikP1AT to P450sky does not exhibit any 

recognizable optical changes.  For example, no shift from a low-spin to high-spin 

state is observed, which P450sky undergoes with native T-domains if loaded with 

the cognate amino acid substrate 21.  This may be due to the enzyme not binding 

in a catalytically relevant way but also may be that P450sky does not acquire a 

spin-shift with histidine.  The three residues that are natively metabolized 

(phenylalanine, O-methyltyrosine, and leucine) are not charged, so it is unknown 

how the effects of a weakly basic residue will affect the substrate entry into the 
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active site and/or how it is oriented in the distal pocket.  An array of free amino 

and fatty acids, of which included L-tyrosine, L-tryptophan, L-leucine, L-glycine, 

L-β-alanine, L-methionine, and L-histidine were added in >100-fold excess and 

results in no spin-shift regardless of the polarity or shape of the molecule (Figure 

2.6).  This is confirmed by the works of Cryle and Walsh that only a loaded T-

domain, possibly specific to the skyllamycin pathway, will cause a spin-shift and 

subsequent catalysis by the enzyme. 

Optical Characterization of P450sky 

In order to quantify how much P450 enzyme is in an actively useful form is 

generally determined through the binding of a hard ligand, such as the spectrum 

in Figure 2.1 showing the ferrous-CO complex.  The dissociation constant for CO 

to P450 enzymes are in the low nanomolar range and the koff is extremely slow 

53-55.  Upon binding, the Soret band of P450sky shifts from 417 nm to 450 nm, 

with approximately 80% of the enzyme successfully completing this transition.  

The Qx and Qy components of the Q-bands merge into one broad peak, 

indicative of the presence of an intact thiolate ligand 49, 56, 57.  However, unlike 

CYP101A1 which maintains a stable P450 spectrum, the 450 nm spectrum 

quickly decays with the Soret band transitioning to 420 nm, indicating a 

displacement of the iron-thiolate ligand.  This is similar to P450nikQ, which 

quickly achieves an 85% transition of the Soret to 450 nm and quickly depletes.  

This may also indicate that more enzyme is active, but the initial spectrum is 

unable to be ascertained due to the time between the addition of sodium 

dithionite and the initialization of the first spectrum on the UV-Vis.   
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The fully reduced spectrum in Figure 2.1 displays a Soret shift from 417 

nm to 410 nm, which is similarly observed in other P450s as well as P450nikQ 58, 

59.  The ferrous form of the enzyme is, as expected, highly sensitive to the 

presence of molecular oxygen, with the Soret immediately shifting from 410 nm 

back to its ferric location at 417 nm.  However, when the formation of the ferrous-

oxy complex was observed (Figure 2.7), the wavelength of the Soret remained at 

417 nm, but with a greatly reduced extinction coefficient reminiscent of human 

cytochrome P450 3A4 60, which is also observed to have a redox potential lower 

than average at -200 mV in a similar spin-state 61.  This differs from most P450s, 

which shows a shift in the Soret band to the vicinity of 430-435 nm, as is also the 

case with P450nikQ 58, 62.  Therefore, this may be a normal occurrence for P450s 

with unusually low redox potentials.  In addition to the decreased 417 nm 

extinction coefficient for the reduced species, the rate of autoxidation is also 

several orders of magnitude greater than with most other p450s 60, 63-65, with a 

ferrous-oxy decay rate of 147 s-1.  It is currently unknown why the rate of ferrous-

oxy autoxidation is high in P450sky compared to other P450 enzymes. 

Electronic Paramagnetic Resonance spectroscopy of P450sky 

P450sky shows a clean S=1/2 signal indicative of a ferric P450 as-purified, 

with g-values of 2.42, 2.24, and 1.92 (Figure 2.7).  These are expected in 

unbound, low-spin P450 enzymes 66-69.  However, there is a small shoulder 

attached to the gz signal that has a value of 2.48, but could be due to the 

presence of imidazole that remained following dialysis 70, 71.  There are also 

peaks at 2.04 and 2.00 indicative of a contaminant copper(II) signal present 
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within the cavity at the time of data collection and not due to its presence in the 

sample itself 72.  Unfortunately, there is no data concerning the bound P450sky/L-

His-NikP1AT complex available at this time.  Should there be a shift in the g-

values, then it would be likely that the substrate is present in the active site, with 

the histidine residue ligating to the heme. 

2.4 DISCUSSION 

Multiple NRPS systems have been studied in the context of their own 

operon products, such as the P450-based β-hydroxylation chemistry performed 

by the nikkomycin system 18, 24, the diiron monooxygenase β-hydroxylation 

chemistry performed by the chloramphenicol system 17, as well as P450-based 

aryl crosslinking reactions for the vancomycin-derived antibiotics 73-75.  While the 

study of these as closed systems has reached its pinnacle, there is untapped 

potential concerning the cross-reactivity of exogenous enzymes to their non-

native NRPS counterparts.  These studies involving individual components of 

various systems would be ideal since each system may have issues concerning 

solubility, expression, or rarity of substrate that may prohibit the study of these 

systems in vitro or in vivo due to the cost necessary to work around these issues.  

One potential issue preventing the immediate use of these types of systems is 

the unknown compatibility and recognition between components of two different 

systems.  However, the idea of combining components from homologous 

systems with similar enzymes or chemistries may prove to be a good starting 

point for future research. 
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The identification of a homologous pair of systems became the primary 

priority, with emphasis on systems that perform the same chemistry.  In this 

case, both the skyllamycin and nikkomycin pathways work with P450 enzymes 

that utilize the canonical mechanism associated with CYP101A1, by 

hydroxylating their respective amino acids at the β-carbon and maintaining a 

reliance on redox partners for 1+1 electron transfer 76.  The two P450s share a 

34% identity and a 53% similarity, so they share a high enough likeness to each 

other that they can be used in this experiment (EMBOSS needle alignment).  

While the P450s are homologous, the NRPS systems are not, as P450sky works 

with three different modules incorporated in multi-modular NRPS and P450nikQ 

operates with a unimodular NRPS.  However, this difference in NRPS structure 

provides an advantage, as the NikP1 gene is a single, soluble protein that 

contains only a di-domain for the module instead of three or more that are 

present in each protein for Sky30-32.  Unfortunately, since the residues 

necessary for complex recognition are unknown for both systems, the surfaces of 

the two P450s cannot be properly compared for compatibility. 

Several notable points have been made by Wise et al. concerning the 

behavior of the nikkomycin system.  For instance, SEC elution profiles show that 

the unbound apo- and L-His-NikP1AT elute at the same point in time while the 

holo-NRPS elutes at a later time point.  P450nikQ was demonstrated to interact 

with NikP1AT if the NRPS is in either its apo or aminoacylated form.  However, it 

was noted that there appears to be two forms of this interaction, with the 

P450nikQ/apo-NikP1AT complex eluting from an S-200 size exclusion column 
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later and at a smaller calculated molecular weight than expected compared to 

P450nikQ/L-His-NikP1AT (Figure 2.8), which elutes at the properly calculated 

molecular weight.  P450nikQ shows no apparent affinity for holo-NikP1AT, but 

this is justified with the different elution pattern from unbound holo-NikP1AT in 

comparison to apo- and L-His-NikP1AT. There is currently no evidence 

suggesting whether the same binding pattern would apply with P450nikQ to the 

apo-, holo-, or aminoacylated-PCP domain. 

Work presented by Ullmann and Cryle on the skyllamycin system have 

demonstrated a lack of affinity between the P450 and the apo- or holo-PCP 

domain 36.  There is data that compares the binding of the P450 with its three 

associated PCPs that have been aminoacylated with various hydrophobic and 

bulky amino acids, as well as enantiomers of the recognized amino acids for 

each T-domain 21.  The results show that the tethered amino acid does alter the 

recognition of the hydroxylase with the T-domain to some degree, demonstrating 

that the amino acid to some extent assists targeting by the hydroxylase to the 

NRPS to form a β-hydroxylation product, which may be involved in downstream 

processes like an intramolecular Fischer condensation-leading to a 

pharmacologically-active depsipeptide. 

Comparison of these points may assist in explaining the results of the 

chromatogram between P450sky and L-His-NikP1AT (Figure 2.9).  For instance, 

the similarity in the elution profiles compared to P450nikQ and apo-NRPS may 

suggest that the PCP is not the sole force in the recognition motif, assuming that 

the apo-NRPS is still in a position that is favorable to receive a PPant, rather than 
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binding to the hydroxylase and preventing the ability to become catalytically 

relevant.  In addition, histidine, a weakly basic amino acid, is not tethered to any 

of the PCPs that are recognized by P450sky, which prefers hydrophobic or 

neutral amino acids 21.  The method of entry for the tethered amino acid through 

the channel of the P450 is currently unknown and inhibits our knowledge 

concerning the importance of amino acid recognition.  Therefore, the T-domain 

may not be interacting with the hydroxylase, which would also support the lack of 

an observable spin-shift upon the addition of excess NRPS to P450sky.  It would 

be interesting to observe the effect of transplanting one of the PCP domains 

associated with the skyllamycin pathway in the place of the PCP attached to 

NikP1AT and again run SEC to see if the elution of the complex occurs at a 

similar place as with P450nikQ/L-His-NikP1AT. 

  The maintenance of the P450nikQ/NikP1 complex in the presence of 

high salt has been determined to be driven predominantly by hydrophobic forces.  

So, in the homologous P450sky/NikP1 system, it may be inferred that the 

interaction is also driven by hydrophobic forces.  Granted, the concentration of 

sodium chloride during the SEC run is 150mM, compared to the 500mM present 

with the P450nikQ interaction, but the evidence that the exterior of the protein 

have a similar charge density gives credence that the interaction of P450sky with 

NikP1 is driven by hydrophobicity.  The interaction between CmlA and CmlP, 

albeit a different system with different tertiary and quaternary structure for the 

hydroxylase, do not maintain a complex throughout an SEC run.  There is also 

no sign of a complex with the use of a native-PAGE gel either.  This could allude 
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to a greater variety of interaction events between systems concerning a mixed 

use of electrostatic or hydrophobic forces driving the interaction. 

2.5 CONCLUSION 

In summary, P450sky is a homolog of P450nikQ and behaves in a similar 

manner, with substrate recognition dependent on attachment to a recognized 

PCP domain.  P450sky from the skyllamycin pathway is demonstrated to interact 

with the NRPS di-domain from the nikkomycin pathway, a cross-system 

interaction that may prove interesting when designing custom NRPS biosynthetic 

pathways.  However, the interaction does not appear to create a P450sky/L-His-

NikP1AT complex that is catalytically relevant.  This is most likely due to the 

hydroxylase interacting with the A-domain, but with little or no recognition for the 

PCP domain of the NikP1 module.  The mode of binding, whether hydrophobic or 

electrostatic, is unknown, but similarity between the two hydroxylases may infer 

that the interaction between P450sky and NikP1 may also be hydrophobic.  The 

future direction of this project would transplant a hydroxylated PCP from the 

skyllamycin into the nikkomycin NRPS and test for functionality, either with SEC 

or through substrate turnover experiments. 
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Figures 

 
 

Figure 2.1:  Optical characterization of P450sky.  5 µM of enzyme is 
present for the ferric (black), ferrous (red), and ferrous-CO (blue) complex of 
P450sky. The ferrous species was determined with 0.3 molar equivalents of 
methyl viologen (shown as a shoulder at 395 nm) and excess sodium dithionite.  
The ferrous-CO species was taken with the addition of CO to anaerobic ferric 
enzyme with methyl viologen and the addition of excess sodium dithionite. 
 
 

 
 

Figure 2.2:  Determination of the KD of imidazole through the optical 
change of the Soret of P450sky.  The dissociation constant was determined 
using 4.5 µM of unbound P450sky.  Fitting the shift in the spectrum from 417 nm 
to 424 nm with a Michaelis-Menten plot gives a KD = 732 µm.  This suggests that 
the channel to the active site of the enzyme is closed to small molecule ligands 
when unbound to recognized T-domain. 
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Figure 2.3:  Determination of the KD of imidazole in the presence of 
P450sky and L-his-NikP1AT through the optical change of the Soret of P450sky.  
The dissociation constant determined with the 5 µM P450sky and 50 µM L-His-
NikP1AT, as in Figure 2.  There is negligible change in the KD, suggesting the 
lack of binding to the P450 to the T-domain of the NRPS. 
 
 

 
 

Figure 2.4:  Determination of the KD of cyanide through the optical change 
of the Soret of P450sky.  The dissociation constant was calculated with 4.5 µM of 
non-NRPS bound P450sky.  The shift from 417 nm to 430 nm is expected for the 
binding of a carbon ligand to the porphyrin.  The high KD = 18.9 mM suggests the 
channel of the active site is both closed and/or does not prefer anionic charges 
entering guiding the entrance into the channel.  A spectrum of a cyanide titration 
in the presence of NRPS-bound P450sky was not taken. 
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Figure 2.5:  Optical spectra of P450sky and P450sky in the presence of L-
his-NikP1AT.  Overlay shows 5 µM P450sky without (black) and bound (red) to 
75 µM L-his-NikP1AT.  Note the lack of high-spin formation at 392 nm and static 
Q-bands from 500-600 nm. 
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Figure 2.6:  Optical spectra of P450sky with amino acids.  The profiles 
show 4.5 µM – 5 µM P450sky incubated with at least >100-fold free amino acids.  
Note the lack of spin-shift in the Soret maximum, indicating that free amino acid 
either not entering the active site or is not displacing the water ligand from the 
porphyrin of the enzyme. 
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Figure 2.7:  Decay of the P450sky oxy complex.  The complex was 
formed with 5 µM ferrous P450sky mixed with 1 mM molecular oxygen on the 
Stopped-flow.  There is no hyspochromic shift generally observed with formation 
of a ferrous-oxy complex, usually present in the the 430-440 nm range.  In 
contrast, the extinction coefficient decreases with no shift in the Soret.  The Q-
bands split from a single peak back to the two recognized in the ferric spectrum.  
The rate of autoxidation more quickly than in other P450s. 
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Figure 2.8:  EPR of ferric, low-spin P450sky.  The spectrum shows 400 
µM unbound P450sky using X-band EPR.  The g-values align with other P450 
spectra in a low-spin state.  Peaks between 3250 and 3350 gauss are products 
of a copper contaminant in the cavity of the instrument.   
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Figure 2.9:  Size-exclusion chromatograph of the P450nikQ/L-his-
NikP1AT complex.  The profiles show P450nikQ (black) and the P450nikQ/L-His-
NikP1AT complex (red) at a 1:10 mixture.  The elution peak at 48 minutes is 
around 125 kDa.  The elution peak at 58 minutes represents is around 50 kDa, 
representative of the presence of free P450.  The decrease in the 417/280 nm 
ratio at 48 minutes for the complex is due to the aromatics present in the NRPS 
that is co-eluting with the P450.  The absorbance increases for the ratio at 58 
minutes, which is the ratio observed with purified P450nikQ. 
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Figure 2.10:  Size-exclusion chromatograph of the P450nikQ/L-his-
NikP1AT complex.  The profiles show P450sky (black) and the P450sky/L-His-
NikP1AT complex (red) at a 1:10 ratio.  The complex elutes at 49.5 minutes, 
coinciding with 105 kDa and is similar to the behavior of the complex between 
P450nikQ and L-His-NikP1AT.  Unbound P450sky elutes at 58 minutes, 
corresponding to 50 kDa. 
 
  



www.manaraa.com

91 
 

 

 
 

Figure 2.11:  Chromatographic partition coefficients (Kav) of the 
hydroxylase/NRPS complexes.  The plot shows the Kavs for the protein 
standards and the corresponding hydroxylase/NRPS complexes as a function of 
the log of molecular weight.   
 
 

 
 

Figure 2.12:  Sequence alignment for PCPs of skyllamycin and 
nikkomycin pathways.  PCPs natively hydroxylated by P450sky are shown in 
green and with the addition of the sequence for the NikP1AT PCP in blue.  The 
phosphopantetheinylated serine residue is shown in red.  The sequences are 
similar and suggests the possibility of interactions between the NRPS and the 
hydroxylase. 
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Figure 2.13:  Sequence alignment for P450sky and P450nikQ.  The 
cysteine that provides the thiolate ligand to the porphyrin is in red.  The site of 
interaction at the F and G helices with the T-domain are in green.  There is 
strong similarity in the G helix, however, more variability is present in the F helix. 
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CHAPTER 3 
 

THE SUBSTITUTION OF MANGANESE-PROTOPORPHYRIN IX INTO 
CYTOCHROME P450OLET 

 
3.1 INTRODUCTION 

 
The incorporation of non-native porphyrin cofactors in heme enzymes 

represents a powerful tool to systematically alter the chemistry, reactivity, 

spectroscopic properties, or redox potential of enzymes that utilize porphyrin as a 

co-factor.  In its idealized form, this methodology represents a means to retain a  

complex polypeptide in a native state, preserving critical features of the 

secondary coordination sphere that are exquisitely tuned to enable substrate 

recognition, ligand binding, and small molecule activation, among others 1-4.  

Historically, many of the protocols that have aimed to substitute porphyrins in 

heme-enzymes have involved harsh conditions that either partially or fully 

denature the protein 5, 6.  This includes the removal of the axial ligand through 

protonation at low pH, and extraction of the porphyrin in a suitable organic 

solvent 7.  The newly-introduced porphyrin is then added to the denatured 

protein, followed by careful alteration of the buffer environment to promote proper 

refolding.  For some proteins (e.g. globins) this procedure works reasonably well 

due to the nature of the more weakly-bound axial ligand (histidine) and exposed 

nature of the heme in the final folded state 8.  Cytochrome P450s, on the other 

hand, have been notoriously difficult proteins for heme-exchange studies due to 
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stronger bonding of the iron to the axial ligand (thiolate) and the buried nature of 

the heme.  As a result, reconstitution studies have only reported in a handful of 

studies due to the low-yield of final protein (typically ~ 5%). 

 Recently, a number of different strategies have explored the use of in vivo 

pathways for novel heme incorporation.  The Marletta laboratory has devised a 

technique that utilizes the RP523 cell line for porphyrin incorporation, eliminating 

the need for harsh unfolding conditions 9.  To achieve this, the RP523 cell line of 

E. coli was utilized which contains a knockout of the hemB, a gene that encodes 

for a zinc enzyme involved in the second step in the biosynthesis of hemin and 

synthesizes monopyrrole porphyobilinogen from two molecules of 5-

aminolevulinic acid 10-13. This inhibits the production of hemin and consequently 

promotes the production of the apo-enzyme.  An added advantage of this cell line 

is that the cell wall and membrane are both permeable to non-native hemes that 

are added to the culture medium 14.  However, a drawback of this procedure is 

that it requires an anaerobic culture environment due to the lack of production of 

heme-enzymes such as catalase that are necessary for the detoxification of 

reactive oxygen species.   

Another attractive method involves the co-expression of heme 

transporters that are utilized by a number of prokaryotes (including pathogenic 

bacteria) for the uptake of heme.   ChuA is a 69-kDa heme receptor located in 

the outer membrane of E. coli O157:H7 that scavenges heme from the 

surrounding environment under iron-replete conditions 15, 16.  The importation of 

iron ions works with the cooperation of the siderophore aerobactin and the 



www.manaraa.com

95 
 

siderophore importer TonB, which chelates iron and transports the metal to the 

cytosol 17, 18.  The mechanism for ChuA (Figure 3.1) emphasizes bypasses the 

need for an iron chelator and the holo-porphyrin can be directly recognized and 

imported by ChuA into the periplasmic space.  Once inside the periplasmic 

space, the porphyrin is shuttled to the inner membrane by the periplasmic 

binding protein (PBP), an ATP-binding cassette (ABC) transport protein for 

movement across the inner membrane into the cytosol 19.   

When overexpressed, the ChuA protein proposedly results in a decrease 

in production of native heme, leading to the incorporation of any non-native 

porphyrin in the cytosol by the expressed proteins.  The only detraction of using 

this method is the necessity for minimal media, which acts to further decrease 

the production of native Fe-Protoporphyrin IX 20.  However, since the presence of 

the added porphyrin can be added at high levels, there is little concern over the 

incorporation of hemin into the protein of interest.  The co-expression of ChuA 

with a gene of interest can also result in an increase in holo-protein production 

compared to normal E. coli strains that rely on the bacterial porphyrin 

biosynthetic pathway due to higher concentrations of cytosolic heme 21, 22.   

ChuA has been previously used to incorporate Fe-deuteroporphyrin IX into 

P450BM3 as a tool to determine if the method can be applied to a thiolate-ligated 

porphyrin enzyme 20.  In conjunction with minimal media, there was 99 % 

incorporation of the Fe-DPIX into the P450, compared to 63 % when the same 

procedure was attempted in Luria Broth.  Other metallo-PPIXs have been 

incorporation into cytochrome c to test for effects on activity and inhibition 23.  



www.manaraa.com

96 
 

Although the porphyrins were transported into the cytosol, there were issues with 

incorporation of zinc and tin based porphyrins into the protein, suggesting that 

factors such as sterics or electronics may be important factors when attempting 

to express metalloproteins in vivo.  Nonetheless, the ChuA system has proven to 

be a useful tool in concert with directed evolution, with the incorporation of non-

native porphyrins into high-throughput screens that test both metal and amino 

acid substitutions.  Brustad and Arnold demonstrated that, in conjunction with in 

silico analysis and a high-throughput testing of modified proteins, that enzymes 

could be screened for enhanced activity for a native substrate 24.  Although these 

systems illustrate the value of porphyrin incorporation into a protein scaffold, 

there are few instances where these proteins have been studied beyond the level 

of product turnover assays.   

 The cytochrome P450 OleTJE presents an ideal scaffold for pursuing 

reactivity studies of high-valent metal oxos.  The ability to rapidly activate H2O2, 

combined with possible contributions from the porphyrin electronics, allows for 

the stable formation of a highly-accumulating ferryl-oxo π-cation intermediate 

(Compound I) in the presence of native substrate 25.  The significant kinetic 

isotope effect of Compound I decay substantiates the need for quantum 

tunneling for the hydrogen abstraction step 26-28.  Following the hydrogen 

abstraction step, hydrogen bonds originating from a water molecule stabilized by 

the carboxylate of the fatty acid and His85 may be involved in stabilization of the 

ferryl-hydroxo intermediate 29.  The mechanism beyond this point is unclear.  

However, the fatty acid decarboxylates and Compound II slowly decays over 
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several hundred milliseconds to the starting ferric, low-spin state 30.  The long 

lifetime of these intermediates make P450oleTJE ideal for testing the 

spectropscopic properties of this enzyme with porphyrins containing non-iron 

metals.   

As a proof of concept, we have adapted the ChuA coexpression for the 

incorporation of Mn-PPIX in cytochrome P450oleTJE.  Optical spectroscopic and 

reactivity studies have been used to optimize conditions for high-level 

incorporation of a non-native metal-containing porphyrin into the enzyme.  The 

reactivity of high-valent Mn-oxo complex with fatty acid substrates is reported.   

3.2 MATERIALS AND METHODS 

Synthesis of Manganese-Protoporphyrin IX 

The synthesis of Mn-PPIX involved minor modifications of existing 

protocols 31, 32.  In a round bottom flask containing 20 mL pyridine, 100 mg of 

protoporphyrin IX (Sigma Aldrich) was mixed with 725 mg manganese (II) 

chloride and refluxed for either 6 hours or until the four characteristic Q-bands of 

the free PPIX merged into two bands (Qx and Qy).  The synthesis was followed 

by UV-Vis with dissolution in pyridine.  The round bottom flask was cooled to 

room temperature and its contents poured into a separatory funnel.  80 mL of 

200 mM HCl were added to the solution to solubilize any unbound metal and the 

solution was vigorously mixed.  20 mL of chloroform were added to the solution 

and mixed vigorously, with the organic phase (containing the porphyrin) 

collected.  This procedure was repeated three additional times on the aqueous 
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layer until no color was observed in the organic layer.  The porphyrin was 

crystallized by evaporating the chloroform with a stream of nitrogen for 8 hours.  

The contents of the container were collected and weighed for percent recovery 

measurements, usually ranging from 98% - 104%.  The purity was verified again 

determined by dissolving the final product in DMSO and taking an optical 

measurement and confirming that the metal was not labile during the extraction 

process. 

Expression of Manganese-PPIX OleT 

pChuA, pLys, and p283-P450oleTJE Y110C vectors were co-transformed 

into BL21 (Dε3) chemically competent cells.  The function of the pLys gene is to 

reduce the minimal amounts of T7 polymerase with the use of T7 lysozyme until 

the culture is properly induced 33.  A single colony from the transformation was 

selected and used to inoculate an overnight culture consisting of LB media.  10 

mL of the overnight culture were used to inoculate one liter cultures of modified 

M9 minimal media recipe consisting of the following ingredients:  12.8 g sodium 

phosphate, dibasic, 3 g sodium phosphate, monobasic, 0.5 g sodium chloride, 1 

g ammonium chloride, 0.5% glycerol, 2 mM magnesium sulfate, 0.1 mM calcium 

chloride, 0.1% casamino acids, 0.05 g kanamycin, 0.1 g ampicillin, and 0.02 g 

chloramphenicol.  The culture was the incubated at 37oC, 210 rpm until 

OD600=0.5, when the temperature was lowered to 20oC and 400 µM magnesium 

(II) chloride was added to each flask.  The addition of the excess metal serves a 

two-fold purpose in both discouraging demetalation of the porphyrin and inhibit 

ferrocheletase from incorporating iron into endogenously produced porphyrin 34.  
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After 20 minutes, 10 mg of Mn-PPIX dissolved in DMSO were added to each liter 

of culture and incubated for 10 minutes, after which the plasmids were induced 

with 50 µM IPTG and allowed to incubate for 30 hours.  The cultures were spun 

down at 6000 rpm for 15 minutes and stored at -80oC until lysed. 

Purification of Manganese-PPIX protein derivatives 

Cells were re-suspended in 200 mL buffer consisting of 50 mM sodium 

phosphate, monobasic, pH=7.5, 300 mM sodium chloride, 10 mM imidazole 

(Buffer A) and lysed via sonication for six 2 minute cycles separated by 5 minutes 

of stirring on ice.  The lysate was cleared by centrifugation for 40 minutes, 16000 

rpm and the supernatant was decanted onto a 10 mL Ni-NTA column pre-

equilibrated with Buffer A.  The column was then washed with 30 column 

volumes of Buffer A + 10 mM imidazole and eluted with Buffer A + 240 mM 

imidazole.  Ammonium sulfate was added to the elution at a final concentration of 

25%, centrifuged, and decanted into a separate container.  P450Olet was then 

salt-cut with ammonium sulfate to 60% and centrifuged.  The supernatant was 

discarded and the pellet was resuspended with 100 mM potassium phosphate, 

pH=7.5 and dialyzed twice in buffer.   

The solution was loaded onto DEAE resin equilibrated with 50 mM 

potassium phosphate, pH=7.5.  The column was subsequently washed with 

phosphate buffer + 50 mM sodium chloride.  The protein was eluted using a 

stepwise gradient of phosphate buffer supplemented with 100, 150, 200, 250, 

300, 400, and 500 mM sodium chloride and the fractions containing porphyrin 
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were pooled together.  The protein was salt-cut and re-suspended to a final 

concentration of 70 µM prior to dialysis and storage at -80oC. 

Pyridine Hemochromagen Assay 

The conditions for the porphyrin hemochromes are similar to published 

methods 35.  For both PPIX-Olet and Mn-Olet, 500 µL of a 5 µM protein solution 

was diluted to 1 mL with a 40% pyridine/200 mM sodium hydroxide mixture and 

mixed.  A spectrum of this oxidized sample was taken prior to the addition of 

solid sodium dithionite, when another spectrum was taken.  Similar spectra were 

taken for an unquantified amount of Fe-PPIX and Mn-PPIX for comparative 

purposes and to account for contaminants during the preparation of the Mn-

PPIX. 

General Characterization of Mn-Olet 

All measurements were made on an Agilent 8453 UV-Vis 

Spectrophotometer using quartz cuvettes (Starna Cells, Inc.) with a path length 

of 10 mm and a 4 mm slit width with or without an anaerobic screw-cap.  The 

concentration of enzyme was calculated using an assumed extinction coefficient 

of 80 mM-1 cm-1.  The manganic form of the protein was taken with 5 µM of as-

purified enzyme in 200 mM potassium phosphate, pH=7.5.  The bound form of 

the spectrum was taken with treatment of 8 µM of as-purified enzyme with 48 µM 

C20H fatty acid solubilized with 30% Triton-X/70% ethanol at room temperature 

for 15 minutes followed by incubation on ice for 1 hour.  The sample was spun 

down at 4oC and the spectrum taken.   
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The dissociation constant was determined by titration of eicosanoic acid to 

5 µM of manganic enzyme and incubation overnight at 4oC.  The samples were 

centrifuged and measured.  The increase of absorbance at 465 nm was plotted 

against the concentration of fatty acid and fit in OriginPro 2017 using a quadratic 

function (Morrison equation) reliable for the determination of tight dissociation 

constants, where Amax is the maximal absorbance change at ligand saturation, S 

is the concentration of eicosanoic acid, Et is the concentration of enzyme, and Kd 

is the dissociation constant: 

𝐴𝐴𝐴𝐴𝑏𝑏𝑠𝑠 = �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

2𝐸𝐸𝐸𝐸 �
(𝑆𝑆 + 𝐸𝐸𝐸𝐸 + 𝐾𝐾𝐾𝐾) − (((𝑆𝑆 + 𝐸𝐸𝐸𝐸 + 𝐾𝐾𝐾𝐾)2 − (4𝑆𝑆𝐸𝐸𝐸𝐸))0.5) 

The manganous form was obtained by first degassing 5 µM fatty acid 

bound enzyme with 250 nM methyl viologen for 30 minutes.  Two molar 

equivalents of sodium dithionite solution were added to achieve a reduced 

spectrum.  The high-valent oxo complex was observed with the addition of 

excess hydrogen peroxide to the reduced protein. 

Stopped-flow kinetics of Mn-Olet 

The measurement of the formation of the high-valent oxo intermediate 

required the use of an SX20 Stopped-flow spectrophotometer (Applied 

Photophysics) for accurate visualization and rate measurements.  The 

temperature of the experiment was set to 4oC and data were collected in 

logarithmic mode for 60 seconds with 5000 time points with the PDA detector 

and 5000 time points with the PMT detector.  All data fittings and visualizations 

utilized the Applied Photophysics Pro-Data SX software.  10 µM enzyme present 
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in excess proteated or deuterated eicosanoic acid was loaded into Syringe A with 

Syringe B containing one of the following oxidants:  5 mM hydrogen peroxide, 

160 µM mCPBA, 3.2 mM sodium hypochlorite, or 5.2 mM peracetic acid.  The 

reaction was mainly followed at 420 nm representing the increase of the high-

valent oxo intermediate and 376 nm representing the decrease of the Soret band 

for the manganic form of the enzyme.   

Rates were observed for the formation of the high-valent oxo intermediate 

at 420 nm, which corresponds to a partial depletion of the manganic Soret band 

at 376 nm, and fit using the following equation, 

𝐴𝐴𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜 =  𝐴𝐴∞ +  �𝐴𝐴𝑖𝑖   

𝑛𝑛

𝑖𝑖=1

𝑒𝑒−𝑡𝑡/𝑡𝑡𝑖𝑖 

where 𝐴𝐴𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜 is the observed absorbance, 𝐴𝐴𝑖𝑖   is the amplitude of phase i, t is time 

in seconds, and 𝐴𝐴∞ is the final absorbance of the trace.  Collected data were 

fitted at 420 nm, the wavelength for the formation of the Mn-oxo intermediate.  

The traces were fitted using a two-summed exponential representing two distinct 

phases in the time trace, with the first phase showing the concerted decrease of 

the manganic Soret at 376 nm and increase of the high-valent oxo species at 420 

nm followed by a slow decay phase.  This slow decay is composed of two 

components: the decay of the high-valent oxo species to the manganic form and 

the overall degradation of the Soret bands as the protein is hydrolyzed in the 

presence of excess peracetic acid.   
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A Hammett plot for the reactivity of the high-valent oxo species for phenol 

derivatives involved hand-mixing 5 mM peracetic acid with 8 µM enzyme and 

aging for at least 30 seconds prior to loading into Syringe A.  Syringe B contained 

2 mM of one of the following: phenol, 4-methoxyphenol, 3-chlorophenol, 1,3-

benzenediol, 1,4-benzenediol, or 4-cyanophenol.  The rates were plotted as the 

log of the rate for the formation of the high-valent oxo species for each derivative 

divided by its rate of formation for phenol against the Hammett sigma constant 

for each derivative.  A linear fit was used to determine the ρ-value, which 

indicates the nuleophilicity of the intermediate and the favorability of the reaction. 

Analysis of turnover products 

The protocol for turnover analysis has been used previously 30, 36.  In 

general, 2 mL of 5 µM enzyme supplemented with 500 µM of C20, C16, or C12 

fatty acid were stirred at room temperature while a solution of 5 mM hydrogen 

peroxide was titrated at a rate of 2 mL/hr for approximately one hour.  Four drops 

of concentrated HCl were subsequently added to quench the reaction and 

protonate excess fatty acid and the solution was mixed for an additional 10 

minutes.  The products and excess fatty acid were extracted from the aqueous 

phase with 4 mL chloroform, vortexed at maximum for 1 minute, and centrifuged 

at 2200 rpm for 3 minutes.  The organic layer was transferred to glass vials, 

where the chloroform was evaporated on ice with a nitrogen stream.  The 

contents were derivatized with 200 µL BSTFA:TMCS (Sigma-Aldrich, 99:1) for 60 

minutes at 60oC.  Samples were stored at -20oC to prevent degradation of the 

derivatized products.   
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Turnover products were analyzed with a Hewlett-Packard 5890 Series II 

Gas Chromatography (GC) instrument featuring a 30 m DB-5ms column with a 

column head pressure ranging from 7 and 15 psi and fitted with a flame ion 

detector.  7 µL of the derivatized sample were injected onto the GC and run on 

two potential programs depending on the initial fatty acid chain length.  For chain 

lengths greater than C16, the following temperature gradient was established:  3 

minutes at 170oC, 5oC/min to 260oC, 10oC/min to 320oC, 2 minutes at 320oC.  

For chain lengths less than C16, the following temperature gradient was used:  3 

minutes at 50oC, 5oC/min to 170oC, 10oC/min to 280oC, 3 minutes at 280oC.  All 

chromatograms were analyzed on HP ChemStation software. 

3.3 RESULTS AND DISCUSSION 

The synthesis of the Mn-PPIX was according to established protocols, 

with nearly 100% incorporation of the manganese metal into PPIX.  As the 

oxidized form of the metal does not readily react with oxygen, the reaction did not 

require anaerobic conditions.  Care was taken during the extraction process not 

to significantly lower the pH of the solution as this will result in demetalation of 

the porphyrin 37.  There are conflicting measurements concerning long-term 

storage causing the demetalation of Mn-porphyrins in aqueous solutions.  In 

some cases, manganese porphyrins have been observed to demetalate in 

aqueous solutions 38, 39.  In other studies, no significant amount of free 

manganese ions present in solution over an extended period of time 40, 41.  To 

alleviate these potential issues, the extracted porphyrin was crystallized and 

stored at -20oC until further use.  Furthermore, the required amount needed for 
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growth was measured and solubilized in DMSO just prior to induction of E. coli 

cells.  Using these procedures, there has been no evidence indicating the 

creation of free porphyrin in the final spectrum of the purified protein. 

The presence of manganese in the purified enzyme was verified with the 

hemochromagen assay, which removes the protein scaffold and replaces the 

distal and proximal ligands of the metalloporphyrin with pyridine.  The results 

show that there is no iron present in the sample, concluding that the porphyrin 

did not demetallate in solution and the intake of the required porphyrin outpaces 

the native production of the iron porphyrin (Figure 3.2).  This is also verified by 

incubating a sample containing carbon monoxide with dithionite and not 

observing a distinct peak at 450 nm, the symbolic location for an iron-loaded 

P450 (Figure 3.3). 

The spectrum of the protein as-purified contains a Soret peak at 376 nm, a 

red-shift of around 20 nm compared to the Soret maximum for manganese-

reconstituted horseradish peroxidase (Mn-HRP) 42, and a blue-shift of around 10 

nm compared to manganese-reconstituted P450 BM3 (CYP102A1, Mn-BM3) 43.  

The Soret is reminiscent of manganese-reconstituted P450 CAM (CYP101), with 

the positioning of the features nearly identical to those observed for Mn-OleT, but 

lacks a pronounced shoulder at 420 nm 44.  It is currently not known whether the 

Soret differences among these P450s are due to positioning of the porphyrin or 

subtle difference in the thiolate ligand (e.g. hydrogen bonding).  There appears to 

be minimal differences of the spectrum of Mn-Olet compared to what is observed 

with manganic myoglobin (Mn-Mb) 45.  There is also a shoulder emanating at 420 
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nm that appears to be present, although in a diminished form, with Mn-Mb and 

Mn-HRP.  The absorbance intensity is reminiscent of manganese-substituted 

P450 BM3, which portrays a more pronounced shoulder at wavelengths higher 

than the Soret maximum.  A sharp, manganese-specific band emanates from 

465 nm.  Its ratio of A465/376 = 0.15 is more subdued compared to Mn-HRP and 

Mn-Mb (~0.6-1.0), but not obliterated as is the case with P450s Mn-CYP101 and 

Mn-BM3.  Q bands are present at 560 nm and 590 nm with an additional feature 

located at 515 nm.  Mn-HRP shows Q bands located in a similar region.  Mn-

BM3 also contains identifiable Q-bands around 525 and 560 nm, similar to their 

placement in Mn-Olet. 

Alterations in the spectrum are noticeable with the addition of C20 fatty 

acid (Figure 3.4).  Unlike Fe-containing P450s, which can exhibit low- to high-

spin (HS) shifts upon substrate binding, manganic porphyrins are HS regardless 

of ligand-binding due to occupancy of the σ* orbital at the dz2 position, which is 

usually unoccupied in the unbound ferric porphyrin 46, 47.  As a result, the 

mechanism of this change has yet to be elucidated for Mn-OleT but may signal 

an environmental change at the thiolate-ligand.  The titration of fatty acid to Mn-

OleT causes neither shifting nor bleaching of the Soret.  However, the Q bands 

become more pronounced at 550 nm and 585 nm.  Other spectra have not been 

found to confirm the regularity of this behavior since the majority of proteins 

studies are derivatives of Mb, which start in a ferrous, high-spin state to facilitate 

binding of molecular oxygen 48.  There is a 1.7-fold increase in the feature at 465 

nm with the titratable addition of fatty acid as well as a 2 nm hypsochromic shift.  
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Titration of the solvent (Triton-X/Ethanol) used to solubilize the eicosanoic acid 

did not yield a spectral change. 

The reduced spectrum for Mn-Olet shows a shift in the 465 nm feature to 

432 nm along with an increased prominence (Figure 3.5).  In addition, the Soret 

shifts from 376 nm to 380 nm with a decrease in absorbance intensity to 75% of 

the original, manganic peak.  The Soret behavior is not known for Mn-CYP101; 

however, the 465 nm feature also forms at around 430 nm with a strong, 

prominent absorbance.  The drastic increase of this feature upon reduction is 

observed in synthetic manganese-porphyrins.   Manganese(III)-meso-

tetrapyridinyl-porphyrin (Mn(III)TPyP), in the presence of hydrogen peroxide, 

displays a bathochromic of the 465 nm feature and the decrease of the Soret 49.  

The Soret shifts in this synthetic porphyrin as well, but to higher energy 

wavelengths and are not observed with Mn-Olet.  The Q bands also become 

stronger while the 515 nm feature decreases, which is also observed in 

Mn(III)TPyP.   

The generation of a high-valent Mn-oxo species was attempted using 

different oxidants, and led to differing results, summarized in Figure 3.6.  There 

was little to no noticeable oxo formation in the presence of hydrogen peroxide.  

The addition of meta chloroperoxybenzoic acid (mCPBA) produced a stable oxo 

complex, but did not accumulate in high yields.  There was a great amount of 

accumulation with sodium hypochlorite, with nearly half of the manganic form 

converted within one second.  However, the species quickly decayed to a new 

species that most likely signaled the dissociation of the thiolate ligand from the 
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porphyrin.  The addition of peracetic acid yields similar quantities of oxo 

intermediate which remains stable for minutes when using low concentrations of 

oxidant.  At higher concentrations (> 3 molar equivalents), the porphyrin 

absorbance decays until the signal is completely bleached.  The high 

accumulation of the peracetic acid must be the oxidative species driving the 

creation of the oxo intermediate.   

The absorbance of the Soret band reduces in intensity and shifts to a 

presumptive high-valent oxo species at 420 nm (Figure 3.7).  The expected 

peroxide shunt pathway would result in a porphyrin that is oxidized by 2 redox 

equivalents relative to the starting state.  In the case of reactions of Mn(III), this 

would be anticipated to generate a reactive Mn(V) or a Mn(IV) porphyrin pi-cation 

radical.  The absorbance features of the latter would generate an absorbance 

feature in the visible region at wavelengths > 600 nm.  Such a species is not 

evident from the rapid mixing studies shown here.  Alternatively, it is also 

possible that a highly-reactive Mn(V)=O species is transiently generated but 

reduced rapidly by redox active amino acids from the protein framework (e.g. a 

nearby tyrosine and tryptophan) to generate a less-reactive Mn(IV) species.  An 

example of this reaction is illustrated in Figure 3.8. 

A scheme that summarizes the anticipated electronics of Mn(IV) and 

Mn(V) species are shown in Figure 3.9.  The formation of the high-valent oxo 

intermediate is similar to those observed with Mn(IV)-BM3 and Mn(IV)-CYP101, 

with an increase in absorbance at 420 nm corresponding to a decrease in the 

manganic Soret at 376 nm.  In order to study this intermediate, the manganic 
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form of the enzyme was reacted against different oxidants, with the most stable 

mechanism used for study.  In addition to the changes at 376 nm and 420 nm, 

peracetic acid bleaches the split Soret present at 465 nm and the manganic Q-

bands while the addition of mCPBA or hypochlorite produce minimal yields of the 

high-valent species.  The addition of sodium hypochlorite frees the porphyrin 

from the protein scaffold quickly after forming the high-valent intermediate, as the 

spectrum of the porphyrin aligns with free Mn-PPIX in aqueous solution after 30 

seconds of incubation.  Therefore, the peracetate was chosen for stopped-flow 

analysis of the presumed Mn(IV) intermediate.  Alternatively, creation of the high-

valent oxo species has been utilized with the addition of hydrogen peroxide to the 

manganous form of the enzyme and causing the formation of the peak at 420 

nm, giving further credence that the high-valent oxo species produced is Mn(IV) 

rather than Mn(V) (Figure 3.10). 

Kinetic data shows the presence of either two or three phases during the 

reaction of as-purified Mn-Olet with varying concentrations of peracetic acid, with 

kinetic traces at 420 nm summarized in Figure 3.11.  The reciprocal relaxation 

times derived from multiple summed-exponential fitting are shown in Table 3.1.  

Provided that the first phase results from the generation of the oxo intermediate, 

the saturating behavior suggests a multi-step reaction in which an initial binding 

step in followed by an irreversible step.  Such a scheme would be consistent with 

formation of the Mn(IV) species as a result of reduction from an exogenous 

source such as a redox-active amino acid.  However, the origin of this first phase 

could also be the result of peracetate gaining quicker access to the active site in 
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the portion of the sample that did not purify bound to palmitic acid, as is observed 

in the iron wild-type enzyme 25.  The second, slower growth phase is linearly 

dependent on peroxide, and may reflect this binding step. The third phase, 

present at higher concentrations of peracetic acid, is likely a slow decay phase 

that results from decomposition of the porphyrin, resulting in bleaching.   

The kinetics of oxo formation were also examined in the presence of a FA 

substrate under saturating conditions and a fraction of the accumulation is 

observed.  Under normal circumstances, this small molecule contaminant can be 

removed by treatment with a few molar equivalents of hydrogen peroxide 

followed by treatment with BioBeads to remove the alkene product.  However, 

attempts at turnover with hydrogen peroxide with the Mn-substituted enzyme with 

saturating eicosanoic acid shows no formation of C19-alkene product, as 

determined by Gas Chromatography.  So the use of it is unclear whether this 

approach will be particularly suitable for the Mn-substituted enzyme.  

There is little accumulation of the high-valent oxo intermediate in the 

presence of eicosanoic acid, so the majority of this analysis involves enzyme that 

has been untreated with fatty acid prior to treatment with peracetic acid but still 

contains fatty acid contaminant from the purification process.  In the presence of 

low concentrations of peracetate, the enzyme undergoes a quick burst-phase 

followed by a slow growth.  Increasing the concentration of peracetate above a 

certain threshold created a third phase representing a slow decay.  The first 

exponential for the formation of the 420 nm peak shows an initial rate of 

formation for the high-valent oxo intermediate of less than 1 s-1 with a peracetic 
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acid concentration at 125-fold excess to the enzyme.  Increasing the peracetate 

concentration above this threshold increases this initial rate to 5 s-1.  The 

composite spectrum extracted from SVD analysis (Figure 3.12) shows this phase 

reaches completion within five seconds post-mixing with peracetate while slower 

second phase completes the total accumulation of the oxo intermediate.  The 

comparative quickness of this RRT compared to the latter rates is likely due to 

peracetate having ease of access to a portion of the sample that purifies non-

fatty acid bound, as there likely is difficulty for the peracetate to enter the active 

site of the enzyme when longer chain fatty acids are bound to the enzyme.  

However, it is difficult to discern what percentage of the enzyme is bound with 

fatty acid post-purification due to the lack of an optically observed spin-shift with 

Mn-PPIX.  Titration of Fe-Olet with eicosanoic acid does not shift the enzyme 

fully high-spin, but rather accumulates between 88%-93% high-spin with the 

remaining portion assumed to be in an inactive state.  An explanation of the initial 

burst phase may be given if the Mn-substituted enzyme behaves similarly to the 

iron wild-type and the 7%-12% partitioned as “dead enzyme” is still able to react 

with peracetate. 

The second phase for the non-fatty acid bound sample shows a rate that 

is one order of magnitude slower than the first phase.  There is a consistency to 

the rates, with oxo formation at less than 0.1 s-1 with 50-fold excess of peracetate 

and goes no higher than 0.12 s-1 in the presence of 750-fold excess of oxidant.  

In the presence of a 24,000-fold excess of peracetate, the rate of oxo formation 

never reaches greater than 1 s-1, possibly due to difficulty for the oxidant 
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navigating fatty acid contaminant to the manganese metal.  The ratio of A420/376 

remains consistent after full accumulation of the oxo intermediate, indicating that 

this is a stable, weak oxidant that achieves around 55% accumulation.  This 

contrasts with the formation of Compound I in the iron wild-type enzyme since it 

is already in a state of decay to Compound II within the first millisecond on the 

Stopped-flow.  Due to its reactivity with the fatty acid substrate, the formation rate 

of Compound II is around 70 s-1, an order of magnitude quicker than with Mn-

Olet. 

 Rates were also measured for samples treated with eicosanoic acid 

under saturating conditions to determine if peracetate can navigate past the 

channel blockage created by the fatty acid contaminant.  This data also fit to a 

two-summed exponential with an initial burst-phase and a slow growth phase.  

The initial phase for the fatty acid treated sample increases to 0.624 s-1, 

compared to the rate of the non-fatty acid treated sample of 0.0802 s-1 (Figure 

3.13).  The second rate similarly increases for the fatty acid treated sample from 

.0155 s-1 compared to the non-fatty acid treated sample at 0.0013 s-1.  While 

saturation of the enzyme with eicosanoic acid prior to treatment with peracetic 

acid increases the rate of formation for the high-valent oxo intermediate, the total 

accumulation is only about 30% compared to a paired reaction without the 

addition of eicosanoic acid.  The ability for the peracetic acid to access the active 

site appears to be hindered due blockage by the fatty acid contaminant.  The oxo 

intermediate appears to be stable with no apparent decay of the high-valent 

intermediate.  In fact, the second RRT for the fatty acid bound time trace 
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continues to increase slightly after 60 seconds whereas the non-fatty acid treated 

enzyme has already begun to decay.  In is currently unclear why the rates are 

quicker for the fatty acid bound enzyme since stearic hindrance should decrease 

the rate for the formation of the intermediate. 

Enzyme with no additional fatty acid bound shows an increase in the 

bleaching of the Soret band at peracetate concentrations greater than 375-fold 

excess to the enzyme.  The effect of porphyrin degradation is slow at lower 

concentrations, leading to a decay of less than 0.002 s-1 when under a 6000-fold 

excess of peracetate.  At 24,000-fold excess of oxidant, the decay rate climbs to 

0.008 s-1.  The reason for the decay is still unknown, but it is possible that the 

peracetate is hydrolyzing the porphyrin after the addition of one equivalent of 

oxidant and renders the enzyme catalytically inert.  Since Fe-Olet turns over 

substrate, there is less concern for inactivation of the enzyme since excess 

peroxide in solution may be continuously converted to water molecules.   

The substitution of iron with manganese leads to a decrease in reactivity 

for Olet.  The stability of this intermediate is persistent regardless of fatty acid 

presence in the active site of the enzyme, indicating that the Mn(IV) oxidant is not 

strong enough to abstract a hydrogen atom from a carbon atom that contains a 

bond dissociation energy of 98 kcal/mol.  This also confirms that the formation of 

the oxo peak is not due to Compound II formation, which was observed by Grant 

in Fe-Olet, since there is no apparent decay of the intermediate to a low-spin 

state.  Proteins that have been substituted with Mn-PPIX show the ability to 

epoxidize styrene and to hydroxylate weak carbon bonds.  However, there is no 
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evidence for the conversion of styrene to styrene oxide with Mn-Olet and also no 

data demonstrating reactivity with C-H with lower BDEs, such as phenols and 

phenol derivatives.   

However, the enzyme is capable of abstracting a hydrogen atom from 

phenol and phenol derivatives.  This was determined through the use of a 

Hammett plot (Figure 3.14), utilizing phenolic derivatives as substrate.  The 

affinity of the enzyme for hydrogen-abstraction from one of these substrates is 

dependent on the electron donating character of the substrate and the acidity of 

the high-valent oxo species within the enzyme.  The variation of the rate of 

formation of the oxo species with electron-donating groups suggests rapid 

hydrogen abstraction, which follows the pattern of the iron-bound porphyrin in the 

wild-type enzyme and its affinity for nucleophilic attack on fatty acid substrates.  

The decrease of oxo decay with electron-withdrawing groups suggests that the 

porphyrin is still tuned to hydrogen abstraction and does not allow for 

electrophilic attack.  The slope of the variation in the reaction rate against the 

Hammett (σ) constant, which indicates the effects of the molecule’s polarity, 

gives a ρ value of 1.2.  The weakness of the slope implies a weak activation of 

the substrate and its positive value suggests the decay of the high-valent oxo 

intermediate is mediated by a hydrogen abstraction step and not the formation of 

a cationic species.  The shift in the Soret from 420 nm to 376 nm in the presence 

of the strongly activating constitutents further implies that the active intermediate 

is a Mn(IV)-oxo, as the Mn(V)-oxo intermediate would be sufficiently acidic to 

perform a hydrogen abstraction from weakly-deactivated phenolic derivatives. 
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3.4 CONCLUSION 

Mn-Olet is a useful tool for determining the feasibility of incorporating non-

iron PPIX to an overexpressed P450 in liter quantities with the use of ChuA.  The 

reactivity of the enzyme to multiple forms of oxidative species show that the 

weaker acidity of the manganese needs a stronger oxidant for activation, with 

peracetate having more success compared to the hydrogen peroxide cofactor 

used by Fe-Olet.  The protein itself, with its ability to achieve a high valent oxo 

intermediate, is useful for testing the ability of a variety of small molecules to 

enter the active site of the protein.  Based on treatment with different oxidants 

containing different physical characteristics, Eicosanoic acid typically blocks 

bulkier small molecules from entering the pocket.  When fatty acid substrate does 

enter the active site, the lack of reactivity and the stability of the high-valent oxo 

intermediate demonstrate difficulty in cleaving C-H bonds with high BDEs.  
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Figures and Tables 
 

 
 

Figure 3.1:  Diagram of non-native porphyrin incorporation into the cell 
with ChuA.  “M” is any metal capable of seating correctly in Protoporphyrin IX.  
ChuA is the importer protein, PBP is the periplasmic binding protein, and ABC is 
the ATP-dependent binding cassette. 
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Figure 3.2:  Pyridine hemochromagen assay for Mn-Olet and Fe-Olet.  
Assay conducted with 10 µM of either Fe-Olet or Mn-Olet.  For both comparison 
and validation that the enzyme is iron-free, 8 µM Fe-Olet was used as a control.  
The lack of an overlap at the α-band for the Mn-Olet confirms undetectable 
amounts of iron in the protein (< 95%). 
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Figure 3.3:  CO difference spectrum for Mn-Olet.  Assay conducted with 4 
µM reduced Mn-Olet.  The black trace is anaerobic Mn(III)-Olet incubated with 
carbon monoxide.  The red trace is upon the addition of excess sodium dithionite 
solution.  There is no obvious peak formed at 450 nm, suggesting the lack of Fe-
Olet present in the solution. 
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Figure 3.4: Determination of KD using the optical changes at 463 nm for 
Mn-Olet.  The dissociation constant was determined with 4 µM Mn-Olet and 
eicosanoic (C20:0) fatty acid in triplicate.  The KD is similar to one obtained for 
Fe-Olet, which is 110 nM (Chapter 4). 
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Figure 3.5:  Optical characterization of Mn-Olet.  4 µM Mn(III)-Olet (in 
black) is reduced with excess sodium dithionite in an anaerobic environment to 
form Mn(II)-Olet (in red). 
 
 



www.manaraa.com

128 
 

 
 

Figure 3.6:  High-valent oxo species formed by Mn-Olet utilizing different 
oxidants.  For all traces, 10 µM of Mn(III)-Olet were reacted against differing 
oxidants, whose concentrations were dependent on protein stability.  5 mM 
hydrogen peroxide reacts, but does not achieve high accumulation.  0.16 mM 
mCPBA yields a small, but stable accumulation of the intermediate species.  3.2 
mM sodium hypochlorite reacts to briefly form high accumulation of intermediate, 
but subsequently decays to a form of the enzyme where the thiolate ligand is 
removed from the Mn-PPIX.  5.2 mM peracetic acid forms and maintains high a 
high accumulation of high-valent oxo complex with minor bleaching dependent 
on the peracetate concentration.  The lack of formation for hydrogen peroxide 
indicates that the peracetate is the active reagent in this reaction. 
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Figure 3.7:  Stopped-flow spectra of high-valent oxo formation in Mn-Olet.  
This details the first 39 seconds of the peracetate panel in Figure 3.6 at 4oC.  
Final concentrations after mixing are 8 µM manganese OleT and 1.5 mM 
peracetic acid.   
 

 

 
 

Figure 3.8:  Proposed reduction pathway from the Mn(V)=O to Mn(IV)=O. 
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Figure 3.9:  Molecular orbitals for proposed oxidation state transitions for 
Mn-Olet upon addition of oxidants.  A) The pathway for the formation of the 
Mn(IV) oxo species beginning with the manganous form of the enzyme and the 
addition of hydrogen peroxide.  B) The pathway for the formation of the Mn(V) 
oxo species with the addition of peracetate to the manganic form of the enzyme. 
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Figure 3.10:  Optical spectra of Mn(IV)=O formation with reduced Mn-Olet 
and hydrogen peroxide.  4 µM Mn-Olet (as-purified) is reduced with 1.5 molar 
equivalents of sodium dithionite in an anaerobic environment.  After full 
reduction, 50 µM hydrogen peroxide was added to the cuvette and mixed.  
Spectra were taken until the enzyme oxidized back to its manganic state.  The 
peak at 420 nm is likely a high-valent oxo intermediate forming prior to its decay 
to an Mn(III) state. 



www.manaraa.com

132 
 

 
 

Figure 3.11:  Time traces of differing concentrations of peracetate mixed 
with Mn-Olet.  Measurements were taken by Stopped-flow at 4oC with 8 µM 
Mn(III)-Olet rapidly mixed with peracetate and observed for the formation of the 
oxo intermediate at 420 nm.  The decay phase constitutes the bleaching of the 
porphyrin absorbance, and not a decay to the Mn(III) form of the enzyme. 
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Table 3.1: Rates of Mn(IV)-oxo formation reacted with differing concentrations of 
peracetic acid.   

 

 
 

A quick burst phase is present in each trace, represented by the first rate.  
This is either followed by or coincides with the slow accumulation of the oxo 
species to its maximum concentration, represented by the second rate.  The third 
rate exerts itself at high concentrations of peracetic acid and is representative of 
the bleaching of the porphyrin absorbance, not the regression of the high-valent 
oxo intermediate back to the manganic form of the enzyme. 
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Figure 3.12:  SVD spectra of the proposed pure Mn(IV)=O species with 
the speciation plot.  These spectra were extracted from the two growth phases 
occurring during the first 30 seconds of the reaction of 8 µM Mn-Olet with 1.5 mM 
peracetate.  The black trace is the manganic form of the enzyme, the red trace is 
the fast growth rate of the reaction, and the blue trace is the slow growth rate of 
the reaction.  The inset shows the concentration of each state as a function of 
time. 
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Figure 3.13:  Stopped-flow spectra of Mn(IV)=O formation of Mn-Olet with 
(right) and without (left) eicosanoic acid.  2 µM Mn-Olet treated with 70 µM 
peracetic acid post-mix on the Stopped-flow at 4oC.  Treatment with C20 fatty 
acid inhibits entry of the peracetate into the active site of the enzyme, allowing for 
a smaller accumulation of the high-valent oxo intermediate.  The first oxo 
formation rate without additional fatty acid is 0.0802 s-1 and a second rate of 
0.0013 s-1, while the first rate with additional fatty acid is 0.624 s-1 and a second 
rate 0.0155 s-1 
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Figure 3.14:  Hammett plot for Mn-Olet with phenol derivatives.  The plot 
was prepared from measuring the rate of oxo formation at 420 nm for each 
derivative followed by normalization with phenol. The log of this normalized factor 
is then plotted against the known Hammett coefficient (sigma) for each 
derivative.  The formation rates were measured by stopped-flow at 4oC by rapidly 
mixing 5 mM peracetic acid with 8 µM Mn-Olet incubated with 1 mM of phenolic 
derivative.  
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CHAPTER 4 

RE-TUNING THE REACTIVITY OF THE FERRYL-OXO INTERMEDIATES IN 

P450OLET THROUGH SUBSTITUTION WITH IRON-MESOPORPHYRIN IX 

4.1 INTRODUCTION 

Alteration of the redox potential of an enzyme is a technique often used to 

study its change in catalytic behavior and develop a catalyst that promotes the 

production of a highly desired product that is not normally produced by the native 

enzyme.  Traditional techniques involve one of two methods.  The first method 

relies on the identification and mutagenesis of residues providing the first or 

second shell interaction with the catalytic metal while the second method 

requires the denaturation and removal of the native metal porphyrin and 

incorporation of the desired one.  However, these studies rarely involve thiolate-

ligated P450s that perform decarboxylase-specific chemistries.  Both of these 

methods have potential difficulties, since mutagenesis requires alteration of the 

environment surrounding the sole endogenous ligand to the metal and the 

incorporation of a non-native porphyrin finishes with low yields due to the harshly 

acidic conditions involved with denaturation and removal of the thiolate-ligated 

porphyrin.   
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More modern methods that have been successfully used for the 

incorporation of non-native porphyrins through the use of knockout mutations 

involved in porphyrin biosynthesis in the RP523 cell line 1-3.  Unfortunately, these 

require stringent growth conditions involving minimal media in an anaerobic 

environment, as to disfavor the formation of radical oxygen species 4, 5.  A softer 

approach is the use of the bacterial heme importer ChuA for the acceptance of a 

non-native porphyrin 6.  Previously, it had been used to transport Mn, Fe, Co, and 

Zn PPIX cofactors into E. coli for incorporation into P450 BM3 (CYP102A1) with 

full incorporation of the added porphyrin 7.   The use of this system with hemin 

has also been reported to result in higher protein expression levels compared to 

the reliance on native porphyrin synthesis in E. coli 8.   

Myoglobin was among the first porphyrin-based proteins to be studied in 

terms of studying the alteration of the redox potential.  Mutations of the second 

coordination sphere have been successfully incorporated into the protein 

scaffold.  Mutagenesis of the S92 residue involved in the second coordination 

sphere for the proximal ligand of the F33Y mutant of myoglobin increases the 

potential by 28 mV 9.  Two distinctive changes to the porphyrin itself may also be 

used, with the addition/reduction of carbons in the porphyrin and the alteration of 

the porphyrin’s prosthetic groups.  Alteration from vinyl groups to those with 

electron withdrawing character, such as formyl groups, will decrease the affinity 

of oxygen towards myoglobin due to the loss of π-electrons 10.  Alteration of the 

ring itself through the addition of more carbons without breaking aromaticity, as 

with hemiporphycene, will increase the potential and as well as the affinity for 



www.manaraa.com

139 
 

oxygen and oxygen-like substrates 11, 12.  Alteration this sort will allow myoglobin 

to activate O2 and perform hydroxylation chemistries and epoxidation on weak 

carbon bonds. 

Similar experiments involving the alteration of the reduction potentials in 

cytochromes have also led to similar results.  Mutation of the histidine ligand to a 

methionine in the electron carrier cytochrome c3 increases the redox potential by 

up to 200 mV 13, a trend comparable to same mutation in cytochrome c 

increasing the potential by 230 mV 14.  The shortening of the Fe-S bond length 

decreases the potential of the protein, while its elongation provides an increase 

in the potential 15.  Bovine cytochrome b5, which functions as an electron carrier 

to membrane-bound oxygenase enzymes, decreases the potential of the enzyme 

by 83 mV when replaced with 2,4 dimethyldeuteroporphyrin 16.  Model systems 

mimicking myoglobin and cytochrome active sites have been used to calculate 

equivalent redox potentials of various iron-porphyrins.  Fe-PPIX has a redox 

potential of -115 mV and Fe-Mesoporphyrin IX (Fe-MPIX) has a redox potential 

of -158 mV, due to the lack of donating character through the transformation of 

the 2,4 vinyl groups to alkyl groups 15.   

Experiments involving the incorporation of non-native porphyrins into 

enzymes with thiolate ligands have been performed to study the effect of 

substrate interaction with an enzyme as a function of redox potential.  Nitric 

Oxide Synthase (NOS) demonstrates a decrease in the redox potential by 

around 50 mV and an increased rate of peroxide activation when PPIX is 

substituted with MPIX 17.   Furthermore, Woodward attributed this to the 
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concentration of the electrons within the porphyrin ring, leading to a “push” effect 

to dissociate the distal oxygen of the bound H2O2 and the subsequent 

stabilization of the Compound I intermediate and a decrease in the rate of 

product formation.  

Porphyrin biosynthetic pathways within the cell are specific for the type of 

metal that is to be incorporated into a given porphyrin.  However, 

misincorporation of the metal in vivo do occur and may also contribute to an 

improperly installed porphyrin.  There are occurrences when this effect has a 

negative impact on the survivability of the cell, as is the case with an non-

catalytically active metal such as zinc or copper is incorporated into PPIX 18.  

Incorporation of these unreactive porphyrins will significantly reduce the oxygen 

carrier’s, such as hemoglobin and myoglobin, activity or render them inert 19.  

However, this also provides a useful mechanism to counteract excess metals 

within the cytosol by incorporating them in an inert form 20.  However, not all 

porphyrins may be utilized as a replacement for hemin.  Incubation of 

apocytochrome c with iron-deuteroporphyrin (DPIX) does not yield a holoprotein, 

but the apoprotein does reconstitute into its holo form after incubation with Fe-

PPIX 21.  

P450olet performs decarboxylation upon its substrate 22 rather than the 

hydroxyl radical rebound mechanism prevalent among P450 monooxygenases 23-

25. The acid-alcohol pair present in CYP101A1 26 is replaced with an arginine-

proline pair which forms a salt bridge to the carboxylate of the fatty acid 27 and, 

as observed on the C20H-bound crystal structure, inhibits the tail of the fatty acid 



www.manaraa.com

141 
 

from accessing a cavity present between the carboxylate residues of the 

porphyrin (PDB ID: 4L40).  Hydrogen peroxide binds to the ferric heme by taking 

advantage of the “peroxide-shunt” mechanism usually present as a release 

mechanism in canonical P450 oxygen activation 28.  This allows two electron 

equivalents to be incorporated by the oxygen species in lieu of two rounds of one 

electron transfers with a ferredoxin.  This makes the enzyme ideal for study in 

vitro since all accumulated spectra carry no interference from iron-sulfur or flavin 

contaminant signals.  The binding of hydrogen peroxide is followed by the 

removal of the proximal proton to give a ferric-hydroperoxo intermediate, 

although the specifics of this portion of the mechanism is presumably not 

elucidated with respect to P450olet due to its high reactivity 29.     

The proton rebounds to the distal oxygen of the peroxide to form water 

and subsequently pushed off, forming a ferryl-oxo π-cation intermediate known 

as Compound I (Cpd. I), which is the first biologically observed species obtained 

through its native mechanism 30.  The life-span of this intermediate is notable 

since it is rarely observed in the presence of the enzyme’s native substrate, 

usually being isolated from a reaction between low-spin, ferric enzyme and an 

activated peroxo-species such as mCPBA or peracetic acid 31.  The rate of Cpd. I 

decay is consistent with differing chain lengths, as it is always observed 

abstracting a hydrogen atom from the β-position of the fatty acid.  Although the 

decay rate is similar, the accumulation of intermediate decreases with decreasing 

fatty acid chain lengths-probably due to a decreased quantity of starting high-spin 

enzyme.  As Cpd. I decays, the ferryl-hydroxo intermediate known as Compound 
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II (Cpd. II) forms.  The lifetime of Cpd. II was verified through the use of the 

radical clock norcarane 30, which confirm its stabilization in the range of 

milliseconds, rather than on the level of picoseconds as is the case for canonical 

P450 hydroxylases 32.  QM/MM studies link the stability of Cpd. II to hydrogen 

bonding networks that raise the activation barrier gating the rebound of the 

hydroxyl radical back to the substrate, but it does allow for the extraction of a 

second electron from the substrate 33.  The exact nature of this stability still 

unknown, as there are no studies confirming the method of decay of Cpd. II and 

no structures firmly dictating the presence of stabilizing forces. 

The mechanistic steps involved with the decay of Cpd. II back to the ferric, 

low-spin form are still debated with two different mechanisms proposed.  The 

missing step involving rebound of the hydroxyl radical implies that a second 

electron must be removed from the substrate in order to maintain a stoichiometric 

number of electrons for the formation of an alkene and carbon dioxide.  However, 

the origin of this second electron is unknown, as it may be located on the oxygen 

of the carboxylate, as proposed by Belcher 27 and verified on other alkene-

producing P450s 34, 35.  This mechanism relies on a radical rearrangement 

involving heterolytic cleavage between the carboxylate carbon and Cα, with one 

electron to the carboxylate to form carbon dioxide and the other to joining with 

the radical on Cβ to form a Cα=Cβ bond.  The alternative mechanism involves 

extraction of the second electron from the β-carbon radical, leaving a cation 

intermediate 36.  The electron pair on the carboxylate anion would form a π-bond 
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with the carbon and homolytically cleave the bond between the carboxylate 

carbon and the Cα, forming a Cα=Cβ bond. 

Upon metabolism of C10-C16 fatty acids by P450olet, the formation of 

hydroxylated fatty acids as minor products becomes apparent 30.  The exact 

reason for this is unknown, but it is likely that residues holding the ω-carbon in 

place no longer have an effect, leading to more mobility for the fatty acid within 

the enzyme’s active site.  Although the amount of hydroxylated product increases 

as fatty acid chain length decreases, the ratio of products remains constant in the 

order of decreasing accumulation: alkene, β-OH, γ-OH, and α-OH fatty acid 37.  

This suggests limits to the freedom for these shorter fatty acids within the active 

site due to the presence of other residues responsible for stabilizing the fatty acid 

that hydroxylation beyond Cγ. 

Other peroxidase enzymes related to P450olet are known to metabolize 

fatty acid substrates, notably the hydroxylation reaction of P450 BSβ 38, 39 and 

P450SPα 40 and the decarboxylation chemistry of P450staph (not published).  

However, no studies have been performed to test the effect altering the redox 

potential will have on the product distribution for these enzymes.  Ideally, the 

enzyme would alter its current product count leading to a higher distribution of 

alkene production for use as drop-in biofuels or the creation of new functional 

groups easily for use in polymer chemistry, such as epoxides, would be essential 

for the manufacture of polymers 41.  The change in the potential observed 

through modification of the porphyrin is driven by the change in electron density 

of the ring and allows the formation of products that may be utilized in fields other 
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than biofuels.  Changing the metal from iron to manganese in PPIX raises the 

redox potential, as mentioned in Chapter 3, leading to creation of epoxides with 

certain molecules, such as the conversion of styrene to styrene oxide.  On the 

other hand, the reduction of the 2,4 vinyl groups in PPIX -creating MPIX- leads to 

a decrease of the potential and provides a baseline in P450olet for products 

catalyzed by a porphyrin with stronger affinity for oxygen adducts.  Although this 

may not be noticeable with fatty acids greater than C18 due to their inherent 

stability within the pocket, the variation in products would be indicative of whether 

it is more prudent to decrease or increase the potential of the porphyrin to alter 

the current balance of hydroxylated product.  In addition, the ability to discern 

information concerning the intermediate steps of the reaction would also be 

useful, especially given how the portion of the mechanism extending from Cpd II 

decay to Ferric, low-spin has not been elucidated.   

The redox potential of native P450olet is unusually positive, lying around -

100 mV in both the Ferric, low-spin and Ferric, high-spin states 27.  This is 

peculiar since the low-spin redox potential for canonical P450s is below -300 mV, 

as with CYP101A1 42 and P450cin (CYP176A1) 43, and prevents the transfer of 

the first electron by their associated ferredoxin rather than position itself where a 

redox partner is able to transfer electrons to the enzyme 44.   Of interest are the 

effects of altering the potential of the enzyme through non-native porphyrins and 

two porphyrins were chosen.  Fe-Mesoporphyrin IX (Fe-MPIX) lowers the 

potential by about 50 mV and into the range of the redox potential for ferric, high-

spin CYP101A1 (Figure 4.1).  2,4-diformyldeuteroporphyrin IX (Fe-dfDPIX) raises 
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the potential by about 70 mV, far outside the redox potential of known P450s.  

Unfortunately, dfDPIX could not be incorporated due to hydrophobic residues 

surrounding the 4-position of the porphyrin and stearically hinders polar groups 

from seating correctly, as determined by the crystal structure referenced earlier.  

This led to attempts at incorporation of stronger electron withdrawing group being 

unsuccessful, leading to a single alteration of the redox potential for the purposes 

of this study.  

4.2 MATERIALS AND METHODS 

Expression of MPOlet  

The plasmid containing the P450olet Y110C mutant 45, cloned into a 

pET283 vector with a T7 promoter and C-terminal 6x polyhistidine tag, was co-

transformed with the vector pChuA (purchased from Addgene [plasmid #42539], 

deposited by Alan Jasanoff) containing the gene for the expression of the 

porphyrin importer ChuA into chemically-competent BL21 (Dε3) cells previously 

transformed with the pLysS plasmid which reduces cellular background signal.  A 

single colony was transferred to an overnight culture and incubated for 12-16 

hours.  From this starter culture, 10 mL of inoculant were added to each liter of 

M9 minimal media, which consists of the following:  12.8 g sodium phosphate, 

dibasic, 3 g sodium phosphate, monobasic, 0.5 g sodium chloride, 1 g 

ammonium chloride, 0.5% glycerol, 2 mM magnesium sulfate, 0.1 mM calcium 

chloride, 0.1% casamino acids, 0.05 g kanamycin, 0.1 g ampicillin, and 0.02 g 

chloramphenicol.  The culture grew at 37oC, 210 rpm until it reached an 

OD600=0.5.  Upon reaching this OD, the temperature was dropped to 20oC and 
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incubated for an additional 20 minutes, when 10 mg of Fe-MPIX (dissolved in 

DMSO) were added to each flask.  The culture incubated for an additional 10 

minutes prior to induction with 50 µM IPTG and grown for 30 hours followed by 

centrifugation for 15 minutes at 16000 rpm and freezing the pellet at -80oC. 

Purification of MPolet 

The pellet was resuspended in 50 mM potassium phosphate, dibasic, 

pH=7.5, 300 mM sodium chloride, 10 mM imidazole (Buffer A) and sonicated at 2 

minute cycles seven times with 5 minute breaks between cycles where the 

solution was stirred on ice.  The lysate was cleared by centrifuging at 16000 rpm 

for 45 minutes and the supernatant was loaded onto a 25 mL Ni-NTA column that 

had been pre-equilibrated with Buffer A.  The column was subsequently washed 

with Buffer A + 10 mM imidazole and the protein eluted with Buffer A + 240 mM 

imidazole.  The eluent was diluted with one equivalent of 55% ammonium sulfate 

solution in 100 mM potassium phosphate, dibasic and cleared by centrifuging at 

4400 rpm for 10 minutes to remove unwanted precipitant.  The supernatant was 

loaded onto a butylsepharose column pre-equilibrated with 30% ammonium 

sulfate and washed with the same buffer.  The protein was eluted with a gradient 

from 30%-0% ammonium sulfate for 200 mL and 5 mL fractions collected.  The 

fractions containing A412/280 > 0.9 were pooled and precipitated with by adjusting 

the concentration to 60% ammonium sulfate and centrifuged as above.  The 

precipitated protein was resuspended in a minimal volume of 200 mM potassium 

phosphate, dibasic, pH=7.5 and dialyzed twice in 2 L of buffer.  A 12% SDS-
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PAGE gel confirmed the purity of the enzymes prior to their experimentation 

(Figure 4.2).  The purified protein was flash-frozen and stored at -80oC. 

UV-Vis 

All UV-Vis spectra were taken with an Agilent 8453 UV-Vis 

Spectrophotometer and analyzed on their proprietary data collection software 

and with the Origin software package.  The spin-state spectra were determined 

by taking 5 µM protein and adding one equivalent of hydrogen peroxide, shifting 

any high-spin protein to a low-spin form.  Four molar equivalents of eicosanoic 

acid were subsequently added and incubated for one hour on ice, centrifuged at 

14000 rpm for 10 minutes, and the spectrum taken for the fully high-spin 

spectrum.  Two molar equivalents of hydrogen peroxide were mixed with the fully 

high-spin protein to ensure that it was still fully active.  The CO spectrum was 

taken by degassing 5 µM protein in an anaerobic cuvette in the presence of 0.1 

molar equivalents of methyl viologen.  CO was bubbled into the cuvette for 5 

minutes and the initial spectrum was taken.  3-6 molar equivalents of degassed 

sodium dithionite solution were added to the cuvette, mixed, and the spectrum 

immediately taken.   

The dissociation constant (KD) was measured in triplicate by taking 

aliquots of 4 µM protein and adding 1 molar equivalent of hydrogen peroxide to 

each tube, ensuring the spectrum is in a fully low-spin state prior to the start of 

the titration.  Eicosanoic acid (dissolved in 30% Triton-X/70% ethanol) was added 

in 0.5 µM increments.  The solutions incubated at 4oC overnight and centrifuged 

for 5 minutes at 14000 rpm.  Spectra were taken for all tubes, averaged, and the 
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KD was calculated with the Morrison equation, a derivative of the Michaelis-

Menten equation for use on data that contains a dissociation constants tighter 

than several micromolar. 

Pyridine Hemochromagen assay 

To determine the percentage of MPolet to PPolet, the pyridine 

hemochromagen assay was used to detect the separation of band distinct for 

both MPIX and PPIX.  This protocol is a modification of a published protocol by 

Barr 46.  Briefly, one equivalent of a 40% pyridine/200 mM sodium hydroxide 

solution was mixed with 6 µM MPolet and an oxidized spectrum taken on the UV-

Vis.  To obtain the reduced species, several grains of sodium dithionite were 

mixed into the sample.  This was repeated for PPIX as an additional reference 

and also to discern differences between Fe-PPIX and PPolet.  Impurities were 

visually determined based on the absorbance of the α-band in the Q-region of the 

spectra. 

Stopped-flow measurements 

The Stopped-flow observes the presence of enzymatic intermediates and 

calculates the rates for any observable intermediates.  All data were collected on 

an Applied Photophysics Stopped-flow instrument using either a photodiode 

array for full spectral collection or a photomultiplier tube for a single, high 

resolution wavelength.  Specific wavelengths observed were at 357 nm 

(Compound I Soret), 410 nm (ferric, low-spin), 430 nm (Compound II), and 680 

nm (Compound I π-cation radical).  Unless otherwise stated, spectra were 

collected under aerobic conditions at 4oC.  All data were analyzed with the Pro-
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Data SX software program from Applied Photophysics and the Origin software 

package.   

To determine the rate of decay for Compound I, rate of formation for 

Compound II, and the decay of Compound II, Syringe A was loaded with 10 µM 

MPOlet incubated with a 4 molar excess of proteated or deuterated fatty acid 

(C20, C16, or C12) and spun down for 10 minutes at 4400 rpm.  Syringe B was 

loaded with 10 mM hydrogen peroxide.  Data were collected with one second, 

logarithmic shots. 

In order to determine the rate for peroxide association and dissociation 

constants, 10 µM enzyme was treated with deuterated or proteated eicosanoic 

acid as above and loaded into Syringe A.  Syringe B contained hydrogen 

peroxide ranging from 80 µM to 10 mM.  The data was plotted as a function of k 

vs peroxide concentration, with the y-intercept indicating the KD of peroxide and 

the slope identifying the peroxide association with the enzyme. 

An Arrhenius dependence plot was developed with a single-mix 

experiment involving 8 µM MPOlet with deuterated eicosanoic acid prepared as 

above and loaded into Syringe A.  Syringe B was loaded with 10 mM hydrogen 

peroxide.  PMT data at the 430 nm wavelength, associated with the decay of 

Compound I to Compound II and the decay of Compound II to low-spin, were 

collected at three second intervals at a temperature range from 2oC to 23oC.  The 

rates were plotted as a function of ln(k) vs 1/T in Kelvin.  The activation energy 

was determined with the Arrhenius equation k=Ae^-(Ea/RT), where k is the rate 

of the decay from either Cpd. I to Cpd. II or Cpd. II to low-spin, A is a multi-
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variable parameter that contains distance to the substrate, Ea is the activation 

energy necessary to proceed to the next intermediate, R is the ideal gas constant 

in kcal/mol, and T is the temperature in Kelvin. 

Determination of turnover products 

Turnover products were measured with a Hewlitt-Packard 5890 Series II 

Gas Chromatography (GC) instrument featuring a 30 m DB-5ms column with a 

column head pressure ranging between 7 and 15 psi and fitted with a flame ion 

detector.  For chain lengths greater than C16, the protocol is as follows:  3 

minutes at 170oC, 5oC/min to 260oC, 10oC/min to 320oC, 2 minutes at 320oC.  

For chain lengths less than C16, the protocol is as follows:  3 minutes at 50oC, 

5oC/min to 170oC, 10oC/min to 280oC, 3 minutes at 280oC.  The turnover 

experiment involved 2 mL of 5 µM untreated protein + 500 µM of proteated fatty 

acid (C20, C16, C14, and C12) in a flat-bottom glass vial.  While stirring at room 

temperature, a 5 mM solution of hydrogen peroxide was slowly titrated using a 

multichannel pipettor at a rate of 2 mL/hr.  After one hour, the titration was 

stopped and the solution stirred for an additional 10 minutes.  Four drops of 12 M 

HCl were mixed for 5 minutes in each vial to aggregate the protein and protonate 

the fatty acid.   

The fatty acid was extracted using an equivalent volume of chloroform, 

vortexed for 1 minute, and spun down for 3 minutes at 2200 rpm.  The organic 

layer was collected, transferred to a separate vial, and evaporated on ice under 

nitrogen gas.  The extracted material was derivatized with 200 µL BSTFA:TCMS 

(Sigma-Aldrich) at a 99:1 ratio and incubated at 60oC for 1 hour.  7 µL of the 
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derivatized contents were injected onto the GC with the program dependent on 

the fatty acid chain length.  Samples were stored at -20oC until shot to prevent 

degradation of the derivatized products.  The data for the chromatographs were 

collected and peaks integrated on proprietary software from Hewlitt-Packard.   

4.3 RESULTS 

Characterization by UV-Vis 

Post-purification, all peaks for MPolet associated with π-π* transitions are 

hypsochromically shifted by 10 nm, leading to a Soret band at 408 nm, high-spin 

band at 382nm, and α/β Q-bands at 565 nm and 530 nm, respectively.  In 

addition, there is a 10 nm shift for the Soret and Q-bands for the ferric, low-spin, 

ferrous, and ferrous-CO complex in MPolet (Figure 4.3) when compared to 

PPolet (Figure 4.4).  This is similar to the spectral shift with MPIX incorporation 

into horseradish peroxidase, which also observes a hypsochromic shift in these 

peaks 47.  The formation of the ferrous spectrum is similar to PPolet as well, 

again with peak maxima blue-shifted by 10 nm to 402 nm.  There is difficulty with 

the shift from the ferric state to the ferrous state, with 3 molar equivalents of 

sodium dithionite to successfully reduce the sample.  This may be due to an 

equilibration issue among the electron exchange that is not present with PPolet, 

but common among NADPH and surrounding redox partners 48 or the lengthy 

equilibration times for P450 BM3 redox potentiometry 49.  The formation of the 

carbon monoxide complex shows a uniform peak centered at 442 nm with no 

indication of accumulation at 450 nm, which is the wavelength of the CO complex 

with PPolet.  The Q-bands merge to form a single band, which indicates an iron-
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thiolate ligand present in the sample.  This intermediate is short lived as the 

sample quickly decays from 442 nm to 410 nm, which corresponds to a 10 nm 

difference observed by PPolet for a severed iron-thiolate bond and catalytically 

inert enzyme 50-52.   

The quantity of high-spin present post-purification is about 40%, which is 

lower than the 50% for PPolet. The co-purification of substrate is not specific to 

P450 peroxidases 53, but the low KD of long chain fatty acid provides an estimate 

concerning the molecule in the active site.  Although the enzyme does not purify 

in an entirely high-spin state, two days of purification in continuously fresh buffer 

undoubtedly rids a portion of the fatty acid from the enzyme preparation.  Upon 

the addition of excess eicosanoic acid, the spin-state shifts to about 80% high-

spin, which is around 10%-15% less than PPolet.  However, the dissociation 

constant for the MPolet/C20 pair is similarly low at 112 nM (Figure 4.5).  This 

supports that the porphyrin is properly seated and not in a position to influence 

binding of the fatty acid.  The high-spin transition also shows an alteration in the 

Q-bands which are similar to PPolet with a blue-shift of 10 nm.  This may infer 

that lowering the potential increases the stability of the water ligand attached to 

the Fe-MPIX, leading to difficulty in transitioning to a high-spin state.  Association 

have been reported between enzymes with lower potential and the accumulation 

of high-spin, notably forming a decreased amount of high-spin with respect to the 

decrease in potential 54, 55.   

The hemochromagen assay shows no significant amount of Fe-PPIX 

present in the folded protein (Figure 4.6).  The Q-bands show a small peak at 
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522 nm with a larger peak at 566 nm for PPolet, whereas there is a splitting of 

two peaks at 506 and 518 nm with a larger peak at 546 nm.  The reason for the 

splitting of the β-band is unclear, but the 20 nm difference for the α-band may be 

due to the loss of the thiol ligand after treatment with pyridine.  In addition, the 

absorbance ratios for the proteins as-purified (A408/280 ≈ 1.0 for MPolet and 

A418/280 ≈ 1.2 for PPolet) are equivalent, indicating that there is little, if any, non-

Fe-MPIX bound enzyme in solution.  This also confirms that there were no issues 

concerning bacterial uptake of the porphyrin or difficulty with incorporation of the 

non-native porphyrin into the enzyme.  The distinct separation between the α and 

β Q-bands also assist in confirming the absence of Fe-PPIX, since a mixture 

would likely merge the bands into a single signal rather than two distinct features.  

To ensure the protein folded correctly and confirm that the reduction of the vinyl 

groups did not interfere with seating in the enzyme active site, spectra were 

taken using Circular Dichroism which displayed no significant differences 

between PPolet and MPolet (Figure 4.7).   

Identification of intermediate species for Meso-Olet 

The addition of a 300-fold excess of hydrogen peroxide led to the 

formation of a ferryl-oxo Soret for Compound I at 357 nm and the formation of a 

π-cation radical at 685 nm, the latter observed to blue-shift by 5 nm instead of 

the 10 nm observed in every other peak (Figure 4.8).  The origin of the π-cation 

radical may be from a transition between the π-orbital and the cationic σ-orbital, 

so the wavelength shift is not comparable to the ππ* transitions present in the 

other peaks 56.  The lack of an Fe-PPIX absorbance band in the hemochromagen 
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spectrum shows that the total formation of the Cpd. I intermediate is from MPolet, 

so no contributions needed to be subtracted out.  The kinetic isotope effect (KIE) 

of KH/KD in the presence of eicosanoic acid gives a value of ~18, which is higher 

compared to other P450 enzymes and PPOlet, whose KIE is 8.1 with C20 fatty 

acid 30, CYP101A1 = 3.8 with norcamphor 57, and HRP B-C = 10.1 with N-

methylaniline 58.  The high KIE concludes that the hydrogen abstraction step is 

the rate-limiting step in the reaction of MPolet with fatty acid.  A plot of Cpd. I 

decay in MPolet from the first kinetic rate measured at 428 nm at different 

concentrations of hydrogen peroxide gives a dissociation constant for hydrogen 

peroxide of 70 µM, a similar value found for PPolet (Figure 4.9).  The absence of 

significant differences conclude that the sidechains involved with stabilizing the 

hydrogen peroxide (H85 and R245) are not displaces and are still within a 

reasonable distance to the distal oxygen of the peroxide for an interaction to 

occur. 

The total accumulation of Cpd. I is greater with MPolet than PPolet, 

indicating a difference between the two proteins in the activation energy (Ea) of 

this intermediate.  This is verified through Arrhenius measurements, which gives 

an Ea=15 kcal/mol for MPolet, around twice the energetic barrier of 7 kcal/mol 

present in PPolet (Figure 4.10).  Both of these barriers are high compared to 

HRP, which has a calculated Ea=3.5 kcal/mol 59 but the values match CYP119 

bound with benzyl alcohol, which has an Ea=15.1 kcal/mol 60.  Interestingly, the 

total accumulation of Cpd. I at 1 ms is about the same at both 4oC and 23oC, 

indicating the presence of a highly stable Cpd. I intermediate.  All rates and 
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fittings are present in Figure 4.11 and Table 4.1 below and applies for all rate 

data shown hereafter for MPolet and PPolet.  In addition, the rate of Cpd I decay 

for MPolet is 30 s-1, about 2.5x slower than PPolet at 75 s-1.  These Cpd. I decay 

rates are quicker than the rate of 9 s-1 calculated by Rittle for CYP119 31 or 29.4 

s-1 calculated by Kellner for CYP119 61.  The presence of the thiolate ligand does 

make the intermediate react quicker than the more catalytically stable 

Hemoglobin I, which has a rate of 0.03 s-1 62.  These data conclude that MPolet 

has a more stable Cpd I intermediate than PPolet. 

The decay of Cpd. I coincides with the formation of the Cpd. II 

intermediate.  The Soret is centered at 422 nm and appears as a shoulder to the 

low-spin form of the enzyme but has smaller absorbance due to a lower 

extinction coefficient compared to the ferric, low-spin species.  The appearance 

of the Q-bands is similar to the low-spin form of the enzyme while the 

hyperporphyrin absorbance increases at 350 nm.  The decay of the Cpd. II 

species back to low-spin is equivalent to, although slightly faster than, the rate of 

PPOlet Cpd. II decay of 10 s-1.  This rate is quicker than myeloperoxidase Cpd. II 

decay, which has a rate of 0.0008 s-1 63, but there are not many examples of 

Cpd. II accumulation, much less decay rates back to the ferric state.  However, 

Meso-Olet has a slightly lower Ea for the formation of Compound II, resting at 15 

kcal/mol instead of 18 kcal/mol.  The combination of the rate of Cpd. II decay and 

the lower activation energy gives an explanation for the increased quantity of 

hydroxylated fatty acid present for fatty acid chain lengths < 18. 

Turnover of Meso-Olet with variable chain length fatty acids 
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All reported turnover data are present in Table 4.2 below, with 

contributions for all PPolet data from Jose Amaya and Cooper Rutland.  The 

percent product conversion for MPolet is around 20% lower than with PPolet, 

possibly due to the higher energy barrier for hydrogen abstraction from the 

substrate.  A similar dip in product conversions were observed with the 

conversion of arginine to citrulline by MPNOS, which also showed a decrease of 

14% in product distribution 17.  However, both MPolet and PPolet show exclusive 

conversion of eicosanoic acid to C19 alkene and carbon dioxide, inferring that 

the amount of alkene observed is greater than 99% for C18 and higher for both 

MPolet and PPolet.  This exclusive creation of alkene for C20 fatty acid is also 

observed for a variety of mutants 64 and homologs, specifically P450staph (data 

not shown).  As the chain length of the fatty acid shortens below C18, the amount 

of alkene produced decreases, compensated by an increase in the production of 

hydroxylated fatty acid. MPolet produces primarily β-OH fatty acid followed by γ-

OH and finally α-OH products.  This partially mimics the product preferences for 

PPolet, as β-OH is the primary hydroxylated product followed by α-OH, although 

previously published work did not indicate the presence of γ-OH fatty acid 64.  For 

all fatty acid chain lengths, there were no observable products outside of the 

alkene and three hydroxylated products for the MPolet construct.  It is currently 

unclear why this change in product distribution occurred, given that alteration of 

the porphyrin should not interfere with the binding behavior of the fatty acid or the 

activation/orientation of the hydrogen peroxide oxidant.   
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4.4 DISCUSSION 

The potential use of PPolet as a biosynthetic catalyst for the creation of 

alkene-based biofuels has been studied for several years.  One deviation from 

ongoing research that has not garnered much attention is determining how much 

of an effect the electronics of the porphyrin itself regulate the product distribution 

of the enzyme, with a primary reason stemming from the difficulty of 

incorporating non-native porphyrins into the protein scaffold.  This traditionally 

was accomplished by growing the culture under a strictly anaerobic environment 

with RP523 cells, which allowed the passage of non-native porphyrins and 

contains a knockout for native porphyrin production.  Attempts to express protein 

in this cell line yielded low pellet weight due to excess cell death, presumably 

from oxygen leakage during protein expression.  However, the use of ChuA 

provides a cheap and facile alternative for the incorporation of porphyrins while 

growing the culture aerobically.   

Fe-MPIX has a redox potential that is about mV lower than Fe-PPIX due 

to the absence of additional resonance stabilization provided by the vinyl groups 

into the porphyrin ring.  This leads to a hypsochromic shift in the ππ* 

absorbance bands by 10 nm.  However, the activation of hydrogen peroxide is 

not affected, with the KD and Koff rates are similar to PPolet.  Reports describing 

MPIX substitution in monooxygenase enzymes show changes in the KD of 

molecular oxygen.  For instance, substitution of Fe-MPIX into CYP101A1 led to 

an increase in the rate of autoxidation 65, but there is no evidence this applies to 

peroxide activation.   



www.manaraa.com

158 
 

The formation of Cpd. I with MPolet is likely accompanied by a decrease 

in basicity and increased difficulty for the ferryl-oxo to proceed with the hydrogen 

abstraction from the substrate.    The addition of deuterated substrate and 

excess hydrogen peroxide leads to equivalent accumulations of Cpd. I observed 

at 2oC as 23oC, but the reasons for this stability are unknown.  One explanation 

may lie in the Arrhenius value for the Ea for decay to Cpd. II being 12 kcal/mol for 

MPolet, a higher value than 7.2 kcal/mol for PPolet.  The higher temperature 

would allow the Cpd. I intermediate to be more stable at higher temperatures for 

MPolet.  Also, the total conversion of fatty acid to product is lower than with 

PPolet, possibly due to this longer lifespan of the Cpd. I intermediate at 25oC. 

This subsequently increases the amount of time that substrate or product is in 

the active site.  In addition, studies of the kinetic isotope effects show that MPolet 

has a KIE (kH/kD) ≈ 18 compared to a KIE of ~7 observed in PPolet.  Both values 

are suggestive that the method of hydrogen abstraction mechanistically lies in an 

electron tunneling event rather than a traditional proton transfer.  However, 

tunneling cannot overcome the decrease in the redox potential of the system and 

this corresponds to a longer-lived Cpd. I. 

Although the rate of Cpd. I decay for Cpd. I is higher in MPolet than it is for 

PPolet, the rate of decay for Cpd. II back to ferric, low-spin is similar, with MPolet 

exhibiting a rate of 15 kcal/mol compared to 18 kcal/mol for PPolet.  This is 

reflected by the lower ratio of alkene to hydroxylated product observed during 

turnover experiments, as the rebound efficiency would increase slightly.  

However, there does not be a rearrangement of hydroxylated products with 
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MPolet, with the dictation of ratios showing a greater percentage of β-OH 

products followed by γ-OH and α-OH.  Since the position of hydroxylation should 

not be determined by the porphyrin but rather by the residues in the distal pocket, 

this infers the porphyrin is not improperly seated and does not lead to a shift in 

the binding motif of any fatty acid substrates.   

The enzyme allows the entry of MPIX, but rejects the incorporation of 

diformyl-deuteroporphyrin IX (df-DPIX).  According to the structural analysis of 

PPolet from a published structure of the protein (PDBID #4L54), multiple 

phenylalanine residues on the protein scaffold are positioned in a manner to 

reject the transformation of the vinyl group at the 4 position into a polar functional 

group, as this would prevent the porphyrin from seating correctly.  However, 

reduction of a 2,4-divinyl protoporphyrin to a 2,4-diethyl protoporphyrin has no 

deleterious effect on its incorporation into the protein in vivo.  This reinforces the 

importance of the local environment when choosing specific porphyrin derivatives 

to introduce into the active site of a P450, although porphyrins with polar 

substituents at the 2,4 positions have been successfully implemented into 

histidine-ligated proteins, such as myoglobin 9 and HRP 47.  

4.5 CONCLUSION 

Attempts to form alternative products for P450olet conclude that methods 

must move beyond tuning the electronics of the porphyrin.  The shift in the redox 

potential for MPolet creates a greater amount of hydroxylated product, but there 

are no observable changes upon reduction of the two vinyl groups, with all 

possible products similar to PPolet.  The sole product in the presence of 
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eicosanoic acid is the C19 alkene while the percent turnover of fatty acid for all 

chain lengths is lower than with PPolet, possibly due to the prolonged stability of 

Cpd. I observable at room temperature, leading to longer time to perform a single 

turnover.  
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Figures and Tables 
 

 
 

Figure 4.1:  Structures of mesoporphyrin IX, protoporphyrin IX, and 
diformyldeuteroporphyrin IX.  Note the aldehyde placements on the diformyl-
deuteroporphyrin, which is repelled by the hydrophobic environment of the 
protein around that 4 position. 
 
 

 
 

Figure 4.2:  12% SDS-PAGE gel of pure P450olet after dfDPIX, MPIX, 
and PPIX incorporation.  The proteins are pure and express well, but the 2,4 
diformylPPolet is a mixture of apo and Fe-PPIX bound. 
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Figure 4.3:  Optical characterization of PPolet.  The spectra show the 
ferric, low-spin (black), ferric, high-spin (green), ferrous (red), and ferrous-CO 
complex (cyan). 
 

 
 

Figure 4.4:  Optical characterization of MPolet.  The spectra show the 
ferric, low-spin (black), ferric, high-spin (green), ferrous (red), and ferrous-CO 
complex (cyan). 
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Figure 4.5:  Determination of KD using the optical changes at 417 nm and 
396 nm for MPolet.  5 µM ferric, low-spin MPolet was mixed with eicosanoic acid 
at 1 µM intervals.  Fitting the plot with the Morrison equation gives a dissociation 
constant of 112 nm, similar to the KD of PPolet. 
 
 

 
 

Figure 4.6:  Pyridine hemochromagen assay of MPolet and PPolet.  The 
absence of signal at 565 nm for MPolet is an indication there are negligible 
quantities of Fe-PPIX present in the sample. 
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Figure 4.7:  CD spectra of purified MPolet and PPolet.  This verifies that 
there is no change in the secondary structure of the construct after incorporation 
of a non-native porphyrin.  The lower absorbance for MPolet is due to the 
instability of P450olet in the given buffer and disproportionate crashing out 
between MPolet and PPolet. 
 

 
 

Figure 4.8:  Stopped-flow spectra of 10 µM MPolet rapidly mixed against 
10 mM hydrogen peroxide.  This plot shows the conversion from Cpd. I (red 
spectrum) to ferric, low-spin (black spectrum) over 1 second with 5 µM MPolet in 
the presence of 5 mM hydrogen peroxide.  Note the presence of the feature at 
685 nm indicative of the π-cation of Cpd. I. 
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Figure 4.9:  Plot of Cpd. I decay as a function of hydrogen peroxide 
concentration.  The initial kinetic rate measured at 428 nm was utilized for this 
plot at different concentrations of hydrogen peroxide.  The slope is 358.2 s-1 and 
the y-intercept is 25.1 mM-1 s-1.  The dissociation constant of hydrogen peroxide 
is 70 µM. 
 
 

 
 

Figure 4.10:  Arrhenius plot for Cpd. I and Cpd. II decay.  The data was 
collected at temperature points from 2oC-23oC at 3oC intervals.  The activation 
energy for the decay of Cpd. I (black) is 12 kcal/mol, a higher value than 7 
kcal/mol for PPolet.  The activation energy (Ea) for the decay of Cpd. II (red) is 15 
kcal/mol, a similar value to PPolet.  The pre-exponential A values are several 
orders of magnitude higher than calculated for PPolet. 
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Figure 4.11:  Kinetic traces for intermediates formed with 5 µM MPolet 
with 10 mM hydrogen peroxide.  Time traces were taken over a one second time-
course and reflect the spectral changes shown in Figure 4.8.  Black lines are the 
collected data and the red lines are the fitting.  The residuals are placed below 
their respective traces.  The top left shows the decay of Cpd. I and recorded at its 
Soret at 360 nm.  The top right shows overall formation of ferric, low-spin 
measured at its Soret at 410 nm.  The bottom left shows the formation and decay 
of Cpd. II measured at 428 nm.  The bottom right shows the decay of Cpd. I 
measured at the π-cation feature at 685 nm. 
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Table 4.1: Kinetic rates associated with PPolet and MPolet for Cpd. I 
decay and Cpd. II decay.   

 

 
 
 .......   The PPolet wavelengths and rates are shown in blue and are provided from 
Jose Amaya and Cooper Rutland.  The MPolet wavelengths and rates are shown 
in red. 
 
 

Table 4.2: Turnover data for MPolet and PPolet 
 

 
 

MPolet data is derived from this work and data from PPolet is from Amaya 
and Rutland.  Note the lower total conversion for MPolet and the presence of 
more hydroxylated product for the lower chain lengths. 
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